Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 曾偉富 | en_US |
dc.contributor.author | 徐力行 | en_US |
dc.contributor.author | Lih-Hsing Hsu | en_US |
dc.date.accessioned | 2014-12-12T02:25:10Z | - |
dc.date.available | 2014-12-12T02:25:10Z | - |
dc.date.issued | 2000 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT890394044 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/66947 | - |
dc.description.abstract | 在這篇論文裡,我們針對單一方向性的超立方體 (UQn) 結構, 做進一步的研究, 首先, 在UQn中, 在n 是偶數且 n 大於或等於 4 的情況下, 當 UQn 最多發生 (n-2)/2 條連接線錯誤時, 我們證明它可以內含一個漢彌爾頓環路, 而這是最佳的結果。 進而, 我們證明出當 UQn 中發生的連接線和節點的錯誤總和小於或等於 (n-2)/2 時, UQn 裡依然可以內含一個長度為 2n - 4fv 的漢彌爾頓環路 (fv為錯誤節點之數量)。 | zh_TW |
dc.description.abstract | A uni-directional hypercube, denoted UQn, is an n-dimensional hypercube, denoted Qn, with simplex uni-directional links. While accommodating large number of nodes, UQn requires less complicated communication than the hypercubes. In addition, they alleviate the pin-limitation problem encountered in fabricating VLSI hypercubes and allow hypercube implementation of the Metropolitan Area Networks using optical fiber links. In this paper, we prove that UQn is (n-2)/2 - edge hamiltonian. That is, in UQn, up to (n-2)/2 links can fail without destroying all available hamiltonian cycles. This result is optimal. Moreover, we prove that a ring of length 2n - 4fv can be embedded in a faulty UQn with |fe| + |fv| (n-2)/2 faulty edges and vertices where fe are faulty edges and fv are faulty nodes. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 漢彌爾頓環路 | zh_TW |
dc.subject | 容錯 | zh_TW |
dc.subject | 超立方體 | zh_TW |
dc.subject | 單一方向性超立方體 | zh_TW |
dc.subject | hypercube | en_US |
dc.subject | uni-directional hypercube | en_US |
dc.subject | fault-tolerant | en_US |
dc.subject | hamiltonian | en_US |
dc.title | 有錯單一方向性之超立方體中環形圖之嵌入 | zh_TW |
dc.title | Fault-Free Ring Embedding in Faulty Uni-directional Hypercube | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊科學與工程研究所 | zh_TW |
Appears in Collections: | Thesis |