完整後設資料紀錄
DC 欄位語言
dc.contributor.author曾偉富en_US
dc.contributor.author徐力行en_US
dc.contributor.authorLih-Hsing Hsuen_US
dc.date.accessioned2014-12-12T02:25:10Z-
dc.date.available2014-12-12T02:25:10Z-
dc.date.issued2000en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT890394044en_US
dc.identifier.urihttp://hdl.handle.net/11536/66947-
dc.description.abstract在這篇論文裡,我們針對單一方向性的超立方體 (UQn) 結構, 做進一步的研究, 首先, 在UQn中, 在n 是偶數且 n 大於或等於 4 的情況下, 當 UQn 最多發生 (n-2)/2 條連接線錯誤時, 我們證明它可以內含一個漢彌爾頓環路, 而這是最佳的結果。 進而, 我們證明出當 UQn 中發生的連接線和節點的錯誤總和小於或等於 (n-2)/2 時, UQn 裡依然可以內含一個長度為 2n - 4fv 的漢彌爾頓環路 (fv為錯誤節點之數量)。zh_TW
dc.description.abstractA uni-directional hypercube, denoted UQn, is an n-dimensional hypercube, denoted Qn, with simplex uni-directional links. While accommodating large number of nodes, UQn requires less complicated communication than the hypercubes. In addition, they alleviate the pin-limitation problem encountered in fabricating VLSI hypercubes and allow hypercube implementation of the Metropolitan Area Networks using optical fiber links. In this paper, we prove that UQn is (n-2)/2 - edge hamiltonian. That is, in UQn, up to (n-2)/2 links can fail without destroying all available hamiltonian cycles. This result is optimal. Moreover, we prove that a ring of length 2n - 4fv can be embedded in a faulty UQn with |fe| + |fv| (n-2)/2 faulty edges and vertices where fe are faulty edges and fv are faulty nodes.en_US
dc.language.isoen_USen_US
dc.subject漢彌爾頓環路zh_TW
dc.subject容錯zh_TW
dc.subject超立方體zh_TW
dc.subject單一方向性超立方體zh_TW
dc.subjecthypercubeen_US
dc.subjectuni-directional hypercubeen_US
dc.subjectfault-toleranten_US
dc.subjecthamiltonianen_US
dc.title有錯單一方向性之超立方體中環形圖之嵌入zh_TW
dc.titleFault-Free Ring Embedding in Faulty Uni-directional Hypercubeen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文