完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 楊明堅 | en_US |
dc.contributor.author | Ming-Jeng Yang | en_US |
dc.contributor.author | 徐力行 | en_US |
dc.contributor.author | 譚健民 | en_US |
dc.contributor.author | Lih-Hsing Hsu | en_US |
dc.contributor.author | Jimmy J.M. Tan | en_US |
dc.date.accessioned | 2014-12-12T02:25:10Z | - |
dc.date.available | 2014-12-12T02:25:10Z | - |
dc.date.issued | 2000 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT890394045 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/66948 | - |
dc.description.abstract | 由Leighton所定義的環繞蝴蝶圖BFn有許多好的性質,包括規律性, 對稱性, 對數直徑, 最大連結性, 漢彌爾頓, 漢彌爾頓分解, 等。我 們討論有錯環繞偶蝴蝶圖BFn中漢彌爾頓環路的嵌入, 當BFn是雙 邊圖的時候。因為環繞偶蝴蝶圖BFn是雙邊圖若且唯若n是偶數, 我們證明當n是大於或等於6的情況下, BFn是2ap-漢彌爾頓。 | zh_TW |
dc.description.abstract | The wrapped butterfly network BFn defined by Leighton has a lot of good properties including regularity, symmetry, logarithmic diameter, maximal connectivity, hamiltonian, hamiltonian decomposable, etc. We study cycle embedding in a faulty wrapped butterfly BFn when BFn is a bipartite graph. Since BFn is bipartite if and only if n is even, we prove that the graph BFn is 2ap-hamiltonian if n is an even integer with n > 4. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 漢彌爾頓環路 | zh_TW |
dc.subject | kp-漢彌爾頓 | zh_TW |
dc.subject | 環繞蝴蝶圖 | zh_TW |
dc.subject | 環路嵌入 | zh_TW |
dc.subject | 凱力圖 | zh_TW |
dc.subject | hamiltonian cycles | en_US |
dc.subject | kp-hamiltonian | en_US |
dc.subject | wrapped butterfly | en_US |
dc.subject | cycle embedding | en_US |
dc.subject | Cayley graph | en_US |
dc.title | 有錯偶蝴蝶圖中漢彌爾頓環路之嵌入 | zh_TW |
dc.title | Hamiltonian Cycles of Even Butterfly Graph with Two Adjacent Pair Node Fault | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊科學與工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |