完整後設資料紀錄
DC 欄位語言
dc.contributor.author鍾文娟en_US
dc.contributor.authorWen-Chuan Chungen_US
dc.contributor.author劉敦仁en_US
dc.contributor.authorDuen-Ren Liuen_US
dc.date.accessioned2014-12-12T02:25:22Z-
dc.date.available2014-12-12T02:25:22Z-
dc.date.issued2000en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT890396020en_US
dc.identifier.urihttp://hdl.handle.net/11536/67040-
dc.description.abstract在本研究中,我們以職務角色為基礎,應用關連規則探勘方法挖掘每一職務角色在企業資訊網站的文件瀏覽型樣,並在同一職務角色之間作協同合作的推薦,動態的根據使用者正在瀏覽的網站內容網頁,判斷可能與此工作相關的文件,作出即時的文件推薦。一般電子商務型態的網站探勘,其交易包含顧客一次購買的物品項目,而在企業資訊網站探勘中,我們將交易定義為組織人員從事一或數項工作所瀏覽的網站內容網頁,因此得到的經常瀏覽型樣是與此組織人員的職務功能有關之工作文件間的關聯。除了工作資訊的推薦外,我們也利用關連規則挖掘職務角色與網頁的關聯,將網頁依所屬的工作類別分類,得到與職務角色相關的工作類別,作為企業員工個人化網頁設計依據。zh_TW
dc.description.abstractIn this research, we apply association rule mining to enterprise’s intranet portal. A role-based mining approach is proposed to discover frequent browsing patterns of Web content pages for organization roles. The on-line recommendations for particular roles can then be achieved by collaborative filtering. The recommended Web content pages are determined by using the active content pages of current session and the discovered role-based association rules. Different from mining e-commence Web sites in which a transaction contains purchased product items, a transaction defined herein includes Web content pages in a browsing session of performing some tasks. The discovered frequent browsing patterns are Web content pages related to a role’s job functions. Moreover, the associations between roles and Web pages are discovered to design employees’ personal Web sites.en_US
dc.language.isozh_TWen_US
dc.subject資料探勘zh_TW
dc.subject關連規則zh_TW
dc.subject資訊推薦zh_TW
dc.subject職務角色zh_TW
dc.subjectData Miningen_US
dc.subjectAssociation Ruleen_US
dc.subjectInformation Recommendationen_US
dc.subjectRole-Baseden_US
dc.title運用關連規則探勘於企業資訊推薦zh_TW
dc.titleMining Association Rules for Information Recommendation in Enterprisesen_US
dc.typeThesisen_US
dc.contributor.department資訊管理研究所zh_TW
顯示於類別:畢業論文