Full metadata record
DC FieldValueLanguage
dc.contributor.authorMishima, Miwakoen_US
dc.contributor.authorFu, Hung-Linen_US
dc.contributor.authorUruno, Shoichien_US
dc.date.accessioned2014-12-08T15:08:46Z-
dc.date.available2014-12-08T15:08:46Z-
dc.date.issued2009-09-01en_US
dc.identifier.issn0925-1022en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10623-009-9282-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/6711-
dc.description.abstractA conflict-avoiding code of length n and weight k is defined as a set C subset of {0, 1}(n) of binary vectors, called codewords, all of Hamming weight k such that the distance of arbitrary cyclic shifts of two distinct codewords in C is at least 2k - 2. In this paper, we obtain direct constructions for optimal conflict-avoiding codes of length n = 16m and weight 3 for any m by utilizing Skolem type sequences. We also show that for the case n = 16m + 8 Skolem type sequences can give more concise constructions than the ones obtained earlier by Jimbo et al.en_US
dc.language.isoen_USen_US
dc.subjectConflict-avoiding codesen_US
dc.subjectExtended Langford sequencesen_US
dc.subjectExtended Skolem sequencesen_US
dc.subjectNear-Skolem sequencesen_US
dc.titleOptimal conflict-avoiding codes of length n equivalent to 0 (mod 16) and weight 3en_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10623-009-9282-2en_US
dc.identifier.journalDESIGNS CODES AND CRYPTOGRAPHYen_US
dc.citation.volume52en_US
dc.citation.issue3en_US
dc.citation.spage275en_US
dc.citation.epage291en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000266007400003-
dc.citation.woscount16-
Appears in Collections:Articles


Files in This Item:

  1. 000266007400003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.