完整後設資料紀錄
DC 欄位語言
dc.contributor.authorDing, A. Adamen_US
dc.contributor.authorShi, Guangkaien_US
dc.contributor.authorWang, Weijingen_US
dc.contributor.authorHsieh, Jin-Jianen_US
dc.date.accessioned2014-12-08T15:08:48Z-
dc.date.available2014-12-08T15:08:48Z-
dc.date.issued2009-09-01en_US
dc.identifier.issn0303-6898en_US
dc.identifier.urihttp://dx.doi.org/10.1111/j.1467-9469.2008.00635.xen_US
dc.identifier.urihttp://hdl.handle.net/11536/6723-
dc.description.abstractMultiple events data are commonly seen in medical applications. There are two types of events, namely terminal and non-terminal. Statistical analysis for non-terminal events is complicated due to dependent censoring. Consequently, joint modelling and inference are often needed to avoid the problem of non-identifiability. This article considers regression analysis for multiple events data with major interest in a non-terminal event such as disease progression. We generalize the technique of artificial censoring, which is a popular way to handle dependent censoring, under flexible model assumptions on the two types of events. The proposed method is applied to analyse a data set of bone marrow transplantation.en_US
dc.language.isoen_USen_US
dc.subjectartificial censoringen_US
dc.subjectlog-rank statisticen_US
dc.subjectmultiple events dataen_US
dc.subjecttransformation modelen_US
dc.titleMarginal Regression Analysis for Semi-Competing Risks Data Under Dependent Censoringen_US
dc.typeArticleen_US
dc.identifier.doi10.1111/j.1467-9469.2008.00635.xen_US
dc.identifier.journalSCANDINAVIAN JOURNAL OF STATISTICSen_US
dc.citation.volume36en_US
dc.citation.issue3en_US
dc.citation.spage481en_US
dc.citation.epage500en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000268988600007-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000268988600007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。