Full metadata record
DC FieldValueLanguage
dc.contributor.author游敬義en_US
dc.contributor.authorChing-Yi Yoen_US
dc.contributor.author蕭國模en_US
dc.contributor.authorDr. Kuo-Mo Hsiaoen_US
dc.date.accessioned2014-12-12T02:26:08Z-
dc.date.available2014-12-12T02:26:08Z-
dc.date.issued2000en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT890489066en_US
dc.identifier.urihttp://hdl.handle.net/11536/67565-
dc.description.abstract本研究的主要目的是以一致致性共旋轉法提出一個推導雙對稱開口薄壁梁元素節點內力及切線剛度矩陣的方法。 本研究用虛功原理推導梁元素節點內力時,元素節點內力所作的虛功是在元素受虛位移擾動前的元素座標上推導,但元素應力所作的虛功是在元素受虛位移擾動後的元素座標上推導,即將元素座標建立在元素受虛位移擾動後的位置,並在其上定義元素的變形及推導虛應變。本研究推導的元素節點內力能滿足靜力的平衡。本研究由元素節點內力的改變與擾動位移的關係推導梁元素的切線剛度矩陣。因本研究在推導元素的節點內力時,扣除了虛位移中剛體運動的部分,而元素的節點內力與元素一起剛體運動,所以不能僅由元素節點內力對節點參數微分求得,還要考慮元素節點內力在剛體運動時因方向改變造成的元素節點內力的改變。本文解非線性平衡方程式的數值計算方法是基於牛頓-拉福森(Newton-Raphson)法配合弧長控制(arc length control)法的增量迭代法。本研究中以系統切線剛度矩陣之行列式值為零當作挫屈準則,利用弧長的二分法求得挫屈負荷,為了測試本研究提出的方法的有效性及準確性,本研究以不同的例題,探討其幾何非線性行為及挫屈負荷並與文獻的結果比較。zh_TW
dc.description.abstractA consistent procedure is proposed to derive the element internal nodal force and tangent stiffness matrix for doubly symmetric thin-walled beam element with open section using the virtual work principle combined with co-rotational total Lagrangian formulation. When the virtual displacement method is used to derive the element nodal force, the external virtual work done by the element internal nodal force and the virtual nodal displacement are defined in the current element coordinates, which are regarded as fixed coordinates. However, the internal virtual work done by the element stress and the virtual strain corresponding to the virtual nodal displacement are defined in an element coordinates which are constructed at the disturbed configuration of the beam element corresponding to virtual nodal displacement. Note that the rigid body motion part in the virtual displacement is eliminated in the derivation of the internal virtual work. The tangent stiffness matrix is derived from the increment of the element nodal force corresponding to an infinitesimal incremental displacement. The increment of the element nodal force comprises the direction change of the element internal nodal force corresponding to the rigid body motion part in the infinitesimal incremental displacement and the increment of the element nodal force corresponding to the deformation part in the infinitesimal incremental displacement. An incremental-iterative method based on the Newton-Raphson method combined with constant arc length of incremental displacement vector is employed for the solution of nonlinear equilibrium equations. The zero value of the tangent stiffness matrix determinant of the structure is used as the criterion of the buckling state. A bisection method of the arc length is used to find the buckling load. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed element and to investigate the buckling load of doubly symmetric thin-walled beams.en_US
dc.language.isozh_TWen_US
dc.subject牛頓-拉福森zh_TW
dc.subject弧長控制zh_TW
dc.subject二階梁理論zh_TW
dc.subject二階一致線性化zh_TW
dc.subject構成方程式zh_TW
dc.subject共旋轉全拉格蘭日zh_TW
dc.subject與結構變形位置相關的外力zh_TW
dc.subject負荷剛度矩陣zh_TW
dc.subjectNewton-Raphsonen_US
dc.subjectarc length controlen_US
dc.subjectsecond order beam theoryen_US
dc.subjectconsistent second order linearzationen_US
dc.subjectconstitutive equationen_US
dc.subjectCo-rotational total Lagrangianen_US
dc.subjectconfiguration dependent loaden_US
dc.subjectload stiffness matrixen_US
dc.title雙對稱開口薄壁梁元素之一致性共旋轉推導法及其在挫屈分析的應用zh_TW
dc.titleA CONSISTENT COROTATIONAL FORMULATION FOR BISYMMETRIC THIN-WALLED OPEN-SECTION BEAMS AND ITS APPLICATION IN BUCKLING ANALYSISen_US
dc.typeThesisen_US
dc.contributor.department機械工程學系zh_TW
Appears in Collections:Thesis