Full metadata record
DC FieldValueLanguage
dc.contributor.author黃怡凱en_US
dc.contributor.authorYi-kai Huangen_US
dc.contributor.author李榮耀en_US
dc.contributor.authorJong-Eao Leeen_US
dc.date.accessioned2014-12-12T02:26:16Z-
dc.date.available2014-12-12T02:26:16Z-
dc.date.issued2000en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT890507004en_US
dc.identifier.urihttp://hdl.handle.net/11536/67683-
dc.description.abstract我們可以利用微分流形的概念描述一個受到穩定且完整約束的運動系統 並且可在標圖上定義若干個獨立座標利用Lagrange equation去求解當然有關微小震動,以及剛體運動所產生的若干性質,是在討論的範圍之內最後則是觀察陀螺的主軸在一些特定條件之下於空間中的運動型態zh_TW
dc.description.abstractWe can use the concept of the differentiable manifold to express a system with an ideal holonomic constraint, and we can define the generalized coordinate on a chart of an atlas of the manifold. So we can solve it by Lagrange equation. Of course we will study some topics in mechanics like small oscillation, the motion of a rigid body. Finally, we will investigate of sleeping and fast tops even of the case that in the absence of gravity.en_US
dc.language.isoen_USen_US
dc.subject流形zh_TW
dc.subject微分流形zh_TW
dc.subject三維旋轉群zh_TW
dc.subject慣性橢球zh_TW
dc.subject嵌入子流形zh_TW
dc.subject慣性算子zh_TW
dc.subject規則進動zh_TW
dc.subject章動zh_TW
dc.subjectmanifolden_US
dc.subjectdifferentiable-manifolden_US
dc.subjectSO(3)en_US
dc.subjectThe Inertia Ellipsoiden_US
dc.subjectEmbedded sub-manifolden_US
dc.subjectThe inertia operatoren_US
dc.subjectregular precessionen_US
dc.subjectnutationen_US
dc.title古典力學專題之研討zh_TW
dc.titleSTUDY on TOPICS of CLASSICAL MECHANICSen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis