Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 黃怡凱 | en_US |
dc.contributor.author | Yi-kai Huang | en_US |
dc.contributor.author | 李榮耀 | en_US |
dc.contributor.author | Jong-Eao Lee | en_US |
dc.date.accessioned | 2014-12-12T02:26:16Z | - |
dc.date.available | 2014-12-12T02:26:16Z | - |
dc.date.issued | 2000 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT890507004 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/67683 | - |
dc.description.abstract | 我們可以利用微分流形的概念描述一個受到穩定且完整約束的運動系統 並且可在標圖上定義若干個獨立座標利用Lagrange equation去求解當然有關微小震動,以及剛體運動所產生的若干性質,是在討論的範圍之內最後則是觀察陀螺的主軸在一些特定條件之下於空間中的運動型態 | zh_TW |
dc.description.abstract | We can use the concept of the differentiable manifold to express a system with an ideal holonomic constraint, and we can define the generalized coordinate on a chart of an atlas of the manifold. So we can solve it by Lagrange equation. Of course we will study some topics in mechanics like small oscillation, the motion of a rigid body. Finally, we will investigate of sleeping and fast tops even of the case that in the absence of gravity. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 流形 | zh_TW |
dc.subject | 微分流形 | zh_TW |
dc.subject | 三維旋轉群 | zh_TW |
dc.subject | 慣性橢球 | zh_TW |
dc.subject | 嵌入子流形 | zh_TW |
dc.subject | 慣性算子 | zh_TW |
dc.subject | 規則進動 | zh_TW |
dc.subject | 章動 | zh_TW |
dc.subject | manifold | en_US |
dc.subject | differentiable-manifold | en_US |
dc.subject | SO(3) | en_US |
dc.subject | The Inertia Ellipsoid | en_US |
dc.subject | Embedded sub-manifold | en_US |
dc.subject | The inertia operator | en_US |
dc.subject | regular precession | en_US |
dc.subject | nutation | en_US |
dc.title | 古典力學專題之研討 | zh_TW |
dc.title | STUDY on TOPICS of CLASSICAL MECHANICS | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |