完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 吳巡有 | en_US |
dc.contributor.author | Chun-Yau Wu | en_US |
dc.contributor.author | 林朝枝 | en_US |
dc.contributor.author | Chaur-Jy Lin | en_US |
dc.date.accessioned | 2014-12-12T02:26:16Z | - |
dc.date.available | 2014-12-12T02:26:16Z | - |
dc.date.issued | 2000 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT890507009 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/67688 | - |
dc.description.abstract | 摘要 基於吉文氏旋轉,我們提供一個韻律演算法把任意nxn矩陣B化簡成上三角的型式.這計算的模式包含n個線性韻律陣列組成一個二維的陣列,每一個陣列包含有(n-i+1)PEs(處理單元),第i個線性陣列的目的是讓矩陣B第i行的第(i+1)個到第n個元素為0,對1<=i<=n。每一個PE結構簡單,且相同型式的PEs都在同一時間內執行相同的指令。它非常適合利用VLSI 去完成。 對兩個任意nxn矩陣A、B,我們應用我們的韻律演算法把Ax=^Bx轉換到A'x=^B'x,其中B'是上三角型. | zh_TW |
dc.description.abstract | Abstract Based on Givens rotation, we present a systolic algorithm to reduce an arbitrary matrix B into upper triangular form .The computational model consists of n linear systolic arrays. Every array consists of (n-i+1) PEs (process elements). These n linear systolic arrays are connected to form a two-dimensional array . For 1<=i<=n,the i-th linear array is responsible to eliminate the j-th element of the i-th column of the matrix B for i+1<=j<=n. Since the structure of every PE is simple and the same type PE executes the identical instructions in the same time, it is very suitable for VLSI implementation . For two arbitrary nxn matrix A , B , we apply our systolic algorithm to transform Ax=^Bx to A'x=^B'x ,where B' is upper triangular form. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 吉文氏旋轉 | zh_TW |
dc.subject | 韻律演算法 | zh_TW |
dc.subject | Givens Rotation | en_US |
dc.subject | Systolic Algorithm | en_US |
dc.title | 吉文氏旋轉的韻律演算法與應用 | zh_TW |
dc.title | A Systolic Algorithm For Givens Rotation and its application | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |