完整後設資料紀錄
DC 欄位語言
dc.contributor.author施冠宇en_US
dc.contributor.authorKu-Yuan Shihen_US
dc.contributor.author許元春en_US
dc.contributor.authorDr. Yuan-Chung Sheuen_US
dc.date.accessioned2014-12-12T02:26:17Z-
dc.date.available2014-12-12T02:26:17Z-
dc.date.issued2000en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT890507014en_US
dc.identifier.urihttp://hdl.handle.net/11536/67694-
dc.description.abstract這篇論文將介紹 Black 和 Scholes 於1973年提出的歐式選擇權價格模型, 同時介紹以二項式、 三項式、 有限差分及 Implied Tree …等數值方法逼近 Black-Scholes 的解析解, 並且近一步計算美式選擇權的合理價格。 最後, 我們以這些方法計算往後看選擇權 (Lookback Option) 的合理價格, 並且以 Root Mean Square Error (RMSE) 探討不同數值方法及參數之間對精確度的差異性。zh_TW
dc.description.abstractIn this paper, we will introduce the European option pricing model developed by Black and Scholes in 1973. At the same time, it can approximate the Black-Scholes formula by many numerical methods, like binomial, trinomial, finite difference, implied tree, etc. We will compute the reasonable price of American option furthermore. Finally, we compute the Lookback option price by these numerical methods and use root mean square error (RMSE) to investigate the accuracies between different numerical methods with parameters.en_US
dc.language.isozh_TWen_US
dc.subject二項式樹狀圖zh_TW
dc.subject三項式樹狀圖zh_TW
dc.subject隱含式樹狀圖zh_TW
dc.subject有限差分法zh_TW
dc.subject新奇選擇權zh_TW
dc.subject往後看選擇權zh_TW
dc.subjectBinomial Treeen_US
dc.subjectTrimonial treeen_US
dc.subjectImplied treeen_US
dc.subjectfinit differenceen_US
dc.subjectExotic optionen_US
dc.subjectLookback optionen_US
dc.title衍生性商品數值評價─樹狀圖法zh_TW
dc.titleNumerical of Derivatives - Tree Methodsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文