Full metadata record
DC FieldValueLanguage
dc.contributor.author蘇育吟en_US
dc.contributor.authorYu-Ying Suen_US
dc.contributor.author翁志文en_US
dc.contributor.authorChih-Wen Wengen_US
dc.date.accessioned2014-12-12T02:26:17Z-
dc.date.available2014-12-12T02:26:17Z-
dc.date.issued2000en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT890507021en_US
dc.identifier.urihttp://hdl.handle.net/11536/67702-
dc.description.abstractG表示一個圖形,我們定義P(G)為最小路徑分割數。而我們定義M(G)所有對應於G圖的對稱方陣之特徵值的最大重覆度。我們研究P(G)和M(G)兩數之間具有的相同性質,並且重證對於任何樹圖T 都滿足P(T)=M (T),我們的方法有別於文獻[1]。最後對其它圖G提出一些關於P(G)及M(G)關係的猜測。zh_TW
dc.description.abstractLet G be a graph, P ( G ) denote the minimal number of vertex disjoint pathsthat cover all the vertices of G, and M ( G ) denote the maximal multiplicity occuring for an eigenvalue of a symmetric matrix with presscribed graph G. We study the common properties between the two numbers P ( G ) and M ( G ), and reprove P ( T ) = M ( T ) for any trees T, in a di?erent method from [1]. Some conjectures are given in the end of this thesis.en_US
dc.language.isozh_TWen_US
dc.subject特徵值最大重覆度zh_TW
dc.subject最小路徑分割數zh_TW
dc.subjectMaximal eigenvalue multiplicityen_US
dc.subjectminimal path partition numberen_US
dc.title圖的特徵值最大重覆度與最小路徑分割數之探討zh_TW
dc.titleMaximal eigenvalue multiplicity and minimal path partition number of a graphen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis