Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 蘇育吟 | en_US |
dc.contributor.author | Yu-Ying Su | en_US |
dc.contributor.author | 翁志文 | en_US |
dc.contributor.author | Chih-Wen Weng | en_US |
dc.date.accessioned | 2014-12-12T02:26:17Z | - |
dc.date.available | 2014-12-12T02:26:17Z | - |
dc.date.issued | 2000 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT890507021 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/67702 | - |
dc.description.abstract | G表示一個圖形,我們定義P(G)為最小路徑分割數。而我們定義M(G)所有對應於G圖的對稱方陣之特徵值的最大重覆度。我們研究P(G)和M(G)兩數之間具有的相同性質,並且重證對於任何樹圖T 都滿足P(T)=M (T),我們的方法有別於文獻[1]。最後對其它圖G提出一些關於P(G)及M(G)關係的猜測。 | zh_TW |
dc.description.abstract | Let G be a graph, P ( G ) denote the minimal number of vertex disjoint pathsthat cover all the vertices of G, and M ( G ) denote the maximal multiplicity occuring for an eigenvalue of a symmetric matrix with presscribed graph G. We study the common properties between the two numbers P ( G ) and M ( G ), and reprove P ( T ) = M ( T ) for any trees T, in a di?erent method from [1]. Some conjectures are given in the end of this thesis. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 特徵值最大重覆度 | zh_TW |
dc.subject | 最小路徑分割數 | zh_TW |
dc.subject | Maximal eigenvalue multiplicity | en_US |
dc.subject | minimal path partition number | en_US |
dc.title | 圖的特徵值最大重覆度與最小路徑分割數之探討 | zh_TW |
dc.title | Maximal eigenvalue multiplicity and minimal path partition number of a graph | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |