完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 曾湄菁 | en_US |
dc.contributor.author | Mei-Jing Tzeng | en_US |
dc.contributor.author | 張鎮華 | en_US |
dc.contributor.author | Gerard J. Chang | en_US |
dc.date.accessioned | 2014-12-12T02:26:17Z | - |
dc.date.available | 2014-12-12T02:26:17Z | - |
dc.date.issued | 2000 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT890507022 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/67703 | - |
dc.description.abstract | 在一個圖G中, 每一個點都可以支配(dominate)它自己以及和它相鄰的點。對一個固定的正整數k (k>=2)而言,無k點子樹支配問題就是去找出最小的點集合,使得圖G中的每個點都可以被這個點集合支配,而這個點集合中沒有 k 點子樹圖﹝不見得一定得是延伸(induced subgraph)圖﹞存在,也就是說,每個部份(component)的大小要小於k。當k=2時,討論無k點子樹問題等於討論一般圖的獨立支配數 r_i(G),當k>=(n+1)/2時,討論無k點子樹支配問題等於討論一般圖的支配數r(G)。在這篇論文中,我們從演算法的角度來看無k點子樹支配問題,我們使用動態規劃(dynamic programming method)設計有效率的演算法,去解決在樹(tree)和塊圖(block graphs)上的無k點子樹分配問題。 | zh_TW |
dc.description.abstract | The Tk-free domination number r(G;-T_k), k>=2, of a graph G is the minimum cardinality of a dominating set D such that the subgraph <D> induced by D contains no tree of k vertices as a (not necessarily induced) subgraph; or equivalently, each component of <D> has less than k vertices. When k=2, the T_k-free domination number is the independent domination number; when k>=(n+1)/2 , the T_k-free domination is the usual domination. In this thesis, we study T_k-free domination from an algorithmic point of view. In particular, we present efficient algorithms for the problem on trees and block graphs by the dynamic programming method. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 支配 | zh_TW |
dc.subject | 無k點子樹 | zh_TW |
dc.subject | 樹 | zh_TW |
dc.subject | 塊圖 | zh_TW |
dc.subject | domination | en_US |
dc.subject | tree-free | en_US |
dc.subject | tree | en_US |
dc.subject | block graphs | en_US |
dc.title | 圖的無k點子樹支配問題 | zh_TW |
dc.title | T_k-free Domination in Graphs | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |