Full metadata record
DC FieldValueLanguage
dc.contributor.author廖啟明en_US
dc.contributor.authorChi-Ming Liaoen_US
dc.contributor.author傅恆霖en_US
dc.contributor.authorHung-Lin Fuen_US
dc.date.accessioned2014-12-12T02:26:18Z-
dc.date.available2014-12-12T02:26:18Z-
dc.date.issued2000en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT890507024en_US
dc.identifier.urihttp://hdl.handle.net/11536/67705-
dc.description.abstract在討論蘭西數R(G)時,先給一個圖形G,然後我們可以從一個完全圖中,任意塗兩個顏色在這個圖的邊上,如果不管怎麼塗色都確定可以從中得到一個同色的子圖,而且它同構於圖形G,那我們就從那些符合的圖裡面找到一個最小的完全圖Kr,同時就把蘭西數R(G)定義為r。在這一篇論文中,我們將會呈現一些蘭西數的結果,就是當 n 介於2到7之間外加所有的偶數,而 m 是任意數時,我們都可以確定R(mPn)=m(n+[n/2])-1。zh_TW
dc.description.abstractFor a fixed graph $G$, we define the smallest integer $r=R(G)$ to be the order of a complete graph $K_{r}$ such that no matter how we assign two colors to the edges of $K_{r}$, there exists a monochromatic subgraph which is isomorphic to $G$. In this thesis, we show that for $2 \leq n \leq 7$, $R(mP_{n})=m(n+[n/2])-1$ for any $m$.en_US
dc.language.isoen_USen_US
dc.subject蘭西數zh_TW
dc.subject路徑zh_TW
dc.subjectramsey numberen_US
dc.subjectpathen_US
dc.title互斥路徑的蘭西數zh_TW
dc.titleOn the Ramsey Number of mPnen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis