Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 廖啟明 | en_US |
dc.contributor.author | Chi-Ming Liao | en_US |
dc.contributor.author | 傅恆霖 | en_US |
dc.contributor.author | Hung-Lin Fu | en_US |
dc.date.accessioned | 2014-12-12T02:26:18Z | - |
dc.date.available | 2014-12-12T02:26:18Z | - |
dc.date.issued | 2000 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT890507024 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/67705 | - |
dc.description.abstract | 在討論蘭西數R(G)時,先給一個圖形G,然後我們可以從一個完全圖中,任意塗兩個顏色在這個圖的邊上,如果不管怎麼塗色都確定可以從中得到一個同色的子圖,而且它同構於圖形G,那我們就從那些符合的圖裡面找到一個最小的完全圖Kr,同時就把蘭西數R(G)定義為r。在這一篇論文中,我們將會呈現一些蘭西數的結果,就是當 n 介於2到7之間外加所有的偶數,而 m 是任意數時,我們都可以確定R(mPn)=m(n+[n/2])-1。 | zh_TW |
dc.description.abstract | For a fixed graph $G$, we define the smallest integer $r=R(G)$ to be the order of a complete graph $K_{r}$ such that no matter how we assign two colors to the edges of $K_{r}$, there exists a monochromatic subgraph which is isomorphic to $G$. In this thesis, we show that for $2 \leq n \leq 7$, $R(mP_{n})=m(n+[n/2])-1$ for any $m$. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 蘭西數 | zh_TW |
dc.subject | 路徑 | zh_TW |
dc.subject | ramsey number | en_US |
dc.subject | path | en_US |
dc.title | 互斥路徑的蘭西數 | zh_TW |
dc.title | On the Ramsey Number of mPn | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |