完整後設資料紀錄
DC 欄位語言
dc.contributor.author葉桂菱en_US
dc.contributor.authorKuei-Ling Linen_US
dc.contributor.author劉晉良en_US
dc.contributor.authorDr. Jinn-Liang Liuen_US
dc.date.accessioned2014-12-12T02:26:19Z-
dc.date.available2014-12-12T02:26:19Z-
dc.date.issued2000en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT890507031en_US
dc.identifier.urihttp://hdl.handle.net/11536/67713-
dc.description.abstract離子佈值的過程是利用高能離子束將摻質離子值入半導體,使帶能量的離子與基板之電子及原子核碰撞而損失能量,最後停止。在半導體內部,摻雜濃度有一尖峰,而且摻質分佈之側圖主要決定於離子質量及佈植離子的能量。在這論文中,我們將會討論:(Ⅰ)有限元素法是適合高能離子佈值的模擬來解波茲曼傳導方程式;(Ⅱ)展示將帶能量1 及帶電的離子磷引進矽半導體內,所模擬的流量分佈的結果。zh_TW
dc.description.abstractIn the process of ion implantation, ions are implanted into the semiconductor by means of a high-energy ion beam. The energetic ions lose their energy through collisions with electrons and nuclei in the substrate such as silicon and finally come to rest. The doping concentration has a peak inside the semiconductor; and the profile of the dopant distribution is determined mainly by the ion mass and implanted-ion energy. In the thesis, we will discuss: (Ⅰ) a finite element method for the solution of the Boltzmann transport equation which is suitable to model the high energetic ion implantation; (Ⅱ) numerical results of the flux distribution of energetic ions for energy implantation of P ions in Si target.en_US
dc.language.isoen_USen_US
dc.subject波茲曼zh_TW
dc.subject用有限元素法zh_TW
dc.subjectBoltzmannen_US
dc.subjectFinite Element Methodsen_US
dc.title用有限元素法解波茲曼傳導方程式zh_TW
dc.titleFinite Element Methods for the Boltzmann Transport Equationen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文