完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 葉桂菱 | en_US |
dc.contributor.author | Kuei-Ling Lin | en_US |
dc.contributor.author | 劉晉良 | en_US |
dc.contributor.author | Dr. Jinn-Liang Liu | en_US |
dc.date.accessioned | 2014-12-12T02:26:19Z | - |
dc.date.available | 2014-12-12T02:26:19Z | - |
dc.date.issued | 2000 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT890507031 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/67713 | - |
dc.description.abstract | 離子佈值的過程是利用高能離子束將摻質離子值入半導體,使帶能量的離子與基板之電子及原子核碰撞而損失能量,最後停止。在半導體內部,摻雜濃度有一尖峰,而且摻質分佈之側圖主要決定於離子質量及佈植離子的能量。在這論文中,我們將會討論:(Ⅰ)有限元素法是適合高能離子佈值的模擬來解波茲曼傳導方程式;(Ⅱ)展示將帶能量1 及帶電的離子磷引進矽半導體內,所模擬的流量分佈的結果。 | zh_TW |
dc.description.abstract | In the process of ion implantation, ions are implanted into the semiconductor by means of a high-energy ion beam. The energetic ions lose their energy through collisions with electrons and nuclei in the substrate such as silicon and finally come to rest. The doping concentration has a peak inside the semiconductor; and the profile of the dopant distribution is determined mainly by the ion mass and implanted-ion energy. In the thesis, we will discuss: (Ⅰ) a finite element method for the solution of the Boltzmann transport equation which is suitable to model the high energetic ion implantation; (Ⅱ) numerical results of the flux distribution of energetic ions for energy implantation of P ions in Si target. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 波茲曼 | zh_TW |
dc.subject | 用有限元素法 | zh_TW |
dc.subject | Boltzmann | en_US |
dc.subject | Finite Element Methods | en_US |
dc.title | 用有限元素法解波茲曼傳導方程式 | zh_TW |
dc.title | Finite Element Methods for the Boltzmann Transport Equation | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |