Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 謝易霖 | en_US |
dc.contributor.author | Yi-Lin Hsieh | en_US |
dc.contributor.author | 徐力行 | en_US |
dc.contributor.author | Li-Hsing Hsu | en_US |
dc.date.accessioned | 2014-12-12T02:27:44Z | - |
dc.date.available | 2014-12-12T02:27:44Z | - |
dc.date.issued | 2001 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT900394008 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/68530 | - |
dc.description.abstract | 在這篇論文中,我們考慮(n,k)星狀圖Sn,k的容錯漢米爾頓性質與容錯漢米爾頓連通性質。假設F □ V(Sn,k) □ E(Sn,k),在n – k □ 2的情況下。我們可以證明當|F | ≤ n – 3時,Sn,k – F會有漢米爾頓環路,並且當|F | ≤ n – 4時,Sn,k –F會有漢米爾頓連結。當n – k = 1時,Sn,n-1的圖形與星狀圖Sn為同構,且我們知道當n > 2時,Sn有漢米爾頓環路,並且只有當n = 2時,Sn才有漢米爾頓連結。 | zh_TW |
dc.description.abstract | In this paper, we consider the fault hamiltonicity and fault hamiltonian connectivity of the (n, k)-star graph Sn,k. Assume that F □ V(Sn,k) □ E(Sn,k). For n – k □ 2, we prove that Sn,k – F is hamiltonian if |F | ≤ n – 3 and Sn,k – F is hamiltonian connected if |F | < n – 4. For n – k = 1, Sn,n-1 is isomorphic to the star graph Sn and it is Known that Sn is hamiltonian if and only if n > 2 and Sn is hamiltonian connected if and only if n = 2. Moreover, all the bounds are tight. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 漢米爾頓環路 | zh_TW |
dc.subject | 漢米爾頓連結 | zh_TW |
dc.subject | n, k星狀圖 | zh_TW |
dc.subject | hamiltonian cycle | en_US |
dc.subject | hamiltonian connected | en_US |
dc.subject | (n, k)-star graph | en_US |
dc.title | (n,k)星狀圖之容錯漢米爾頓性質與容錯漢米爾頓連通性質 | zh_TW |
dc.title | Fault Hamiltonicity and fault Hamiltonian connectivity of ?The (n, k)-star graph | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊科學與工程研究所 | zh_TW |
Appears in Collections: | Thesis |