Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 葉鎮源 | en_US |
dc.contributor.author | Jen-Yuan Yeh | en_US |
dc.contributor.author | 柯皓仁 | en_US |
dc.contributor.author | 楊維邦 | en_US |
dc.contributor.author | Hao-Ren Ke | en_US |
dc.contributor.author | Wei-Pang Yang | en_US |
dc.date.accessioned | 2014-12-12T02:27:55Z | - |
dc.date.available | 2014-12-12T02:27:55Z | - |
dc.date.issued | 2001 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT900394087 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/68615 | - |
dc.description.abstract | 本論文提出了兩種新的文件摘要方法來摘錄原始文件中的重要語句。第一個方法屬於以文件集為基礎的摘要技術(Corpus-based Approach),此方法基於統計模型,利用特徵的分析來計算語句重要性。我們提出三個新的想法:1) 利用語句位置重要性的分級以提高不同語句位置的重要性;2)利用詞彙相關程度(Word Co-occurrence)計算找出文件中的新詞,並將新詞加入關鍵詞重要性的計算,以得到更精確的關鍵詞權重特徵值;3) 利用基因演算法訓練計算語句權重的Score Function,以期了解訓練文件集的特性。第二個方法,我們結合潛在語意分析(Latent Semantic Analysis)與主題相關地圖(Text Relationship Map)的概念,用來擷取文件中的概念結構(Conceptual Structure)以期得到語意層面的分析。實驗中,我們收集100篇新台灣週刊中關於政治類的文章,並將上述的兩種方法應用於中文文件的摘要實驗上。效益評估結果顯示,我們所提的方法都有不錯的表現,在壓縮比為30%的情況下,平均來說,召回率分別為52.0%及45.6%。 | zh_TW |
dc.description.abstract | In this thesis, two novel approaches are proposed to extract important sentences from a document to create its summary. The first is a corpus-based approach using feature analysis. It brings up three new ideas: 1) to employ ranked position to emphasize the significance of sentence position, 2) to reshape word unit to achieve higher accuracy of keyword importance, and 3) to train a score function by the genetic algorithm for obtaining a suitable combination of feature weights. The second approach combines the ideas of latent semantic analysis and text relationship maps to interpret conceptual structures of a document. Both approaches are applied to Chinese text summarization. The two approaches were evaluated by using a data corpus composed of 100 articles about politics from New Taiwan Weekly, and when the compression ratio was 30%, average recalls of 52.0% and 45.6% were achieved respectively. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 中文文件摘要 | zh_TW |
dc.subject | 以文件集為基礎的摘要技術 | zh_TW |
dc.subject | 潛在語意分析 | zh_TW |
dc.subject | 主題關係地圖 | zh_TW |
dc.subject | Chinese Text Summarization | en_US |
dc.subject | Corpus-based Approach | en_US |
dc.subject | Latent Semantic Analysis | en_US |
dc.subject | Text Relationship Map | en_US |
dc.title | 文件自動化摘要方法之研究及其在中文文件的應用 | zh_TW |
dc.title | A Study on Automated Text Summarization and Its Application on Chinese Documents | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊科學與工程研究所 | zh_TW |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.