完整後設資料紀錄
DC 欄位語言
dc.contributor.author蔡文智en_US
dc.contributor.authorWen-Chich Tsaien_US
dc.contributor.author陳安斌en_US
dc.contributor.authorAn-Pin Chenen_US
dc.date.accessioned2014-12-12T02:27:57Z-
dc.date.available2014-12-12T02:27:57Z-
dc.date.issued2001en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT900396022en_US
dc.identifier.urihttp://hdl.handle.net/11536/68653-
dc.description.abstract在全球各地,無論英文、日文、中文,凡研究語音辨識的技術,首推使用隱藏式馬可夫模型(Hidden Markov Model,HMM),而一窺美國語音辨識技術專利的申請數可以發現自1988年至1998年語音辨識的技術專利到達高峰,之後日趨減少,由此可以顯示出此項辨識方法的技術趨於成熟,是以本論文將藉由此種以機率與統計做為基礎的隱藏式馬可夫模型理論,將其做創新的應用於股市單日交易預測上。 然而在此種藉由機率與統計原理做基礎的理論上,用來描述訊號所具有的特徵,此方法具有整體的隨機和局部的穩定性,且能容忍多變異性訊號,正符合了股市的虛中帶實,實中帶虛,看似無法則,然事實上就如目前使用的種種線型分析,如MACD、K線圖,又在在顯示其中隱藏一些可以預測的特徵,是以在尚無法洞聽股市變化的今日,本研究嘗試應用此模型來學習出股市的語法,就如同此模型應用在各國語言的語音辨識之上,而在學習出股市語法後,進而加以預測其下一個會出現的語句,進而達到具獲利性的決策模型。 而股票交易市場可謂是經濟的櫥窗,由於集中市場的交易,每日的交易量動輒數百億,股市熱絡時甚至可達上千億,然股市憂關技術面、心理面、個體經濟面、總體經濟面、資金面、政治面等多方面因素,對股市投入了不可預知的多維度的變異性,而對於大多數投資人而言,無不希望以積極的手法從中獲取超額的報酬,是以自證管會自民國八十三年元月五日起開放以信用交易資券相抵交割之方式進行當日股票賣之沖銷,而由於證管會規定股票當日沖銷有平盤以下不可放空之規定,是以而本研究將以臺灣加權股價指數作為實證對象,使其不會因此項規定而受限。經由本研究的實證,可得以下之結論。本研究之結果發現:隱藏式馬可夫模型的預測方法將優於投信投顧所使用的當日沖銷決策模式開盤八法及金融預測上具代表性的弱式效率市場假設決策模型,且經統計檢定後實驗證明其差異極為顯著。zh_TW
dc.description.abstractAround the world, the Hidden Markov Models (HMM) are the most popular methods in the machine learning and statistics for modeling sequences, especially in speech recognition domain. According to the number of patent applications for speech recognition technology form 1988 to 1998, the trend shows that this method has become very mature. In this thesis, we will make a new use of the HMM and apply it on day trading stock forecast. However, the HMM is based on probability and statistics theory. In a statistics framework, the HMM is a composition of two stochastic processes, a Hidden Markov chain, which accounts for temporal variability, and an observable process, which accounts for spectral variability. The combination contains uncertainly status just likes the stock walk trace. Therefore, the HMM and the stock walk trace have the same idea by coincidence. In this thesis, we will try to learn the stock syntax; just like how the HMM model was used in speech recognition in different languages, and the take the next step ahead in price prediction. Additionally, the stock market is the reflection of the economy. The stock trace is impacted by many factors such as policy, psychology, microeconomics, economics, and capital, etc. There, in this thesis, the TAIFEX Taiwan index futures (TX) and day trade are used to avoid all the uncertainty factors. After the all experiments, it is proven that the HMM is better than the benchmark method- Random Walk method and the Investment Trust & Consulting Association method- Modified Trading method. Moreover, the result is very conspicuous by the statistics testing of significance.en_US
dc.language.isoen_USen_US
dc.subject單日沖銷zh_TW
dc.subject隱藏式馬可夫模型zh_TW
dc.subject時間序列預測zh_TW
dc.subjectDay tradeen_US
dc.subjectHidden Markov Modelen_US
dc.subjectModified Trading methoden_US
dc.subjectTime series forecastingen_US
dc.title以隱藏式馬可夫模型應用於股市單日交易測上zh_TW
dc.titleUsing Hidden Markov Model for Stock Day Trade Forecastingen_US
dc.typeThesisen_US
dc.contributor.department資訊管理研究所zh_TW
顯示於類別:畢業論文