完整後設資料紀錄
DC 欄位語言
dc.contributor.author曹登鈞en_US
dc.contributor.authorTeng-Chun TSAOen_US
dc.contributor.author王逸如en_US
dc.contributor.authorDr. Yih-Ru Wangen_US
dc.date.accessioned2014-12-12T02:28:31Z-
dc.date.available2014-12-12T02:28:31Z-
dc.date.issued2001en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT900435067en_US
dc.identifier.urihttp://hdl.handle.net/11536/68944-
dc.description.abstract在本論文中,我們提出一套藉由統計方式來求取語音基頻軌跡的方法,並將之應用於國語連續語音之聲調辨認器。首先,我們將基頻抽取的工作視為找尋一條最有可能之基頻軌跡,藉由適當的建立各種音框屬於有聲/無聲的機率模型,以及各音框間基頻值轉換的機率模式,我們可將基頻軌跡求取之問題轉換成為一個最佳相似度(Maximum Likelihood, ML)的問題。由實驗證明,上述方法所求取之基週軌跡較現有方法為佳。其次,我們使用多層式類神經網路(MLP)辨認器去對所求出基頻軌跡做國語聲調,可達到77%的辨認率。zh_TW
dc.description.abstractIn this thesis, we proposed a statistical method to find the more reliable pitch contour of continue Mandarin speech. After finding the pitch contour, a neural network based tone recognizer was used to find the tone recognition results. First, the pitch contour abstraction task was treat as finding the most probable pitch contour in lots of candidates decided in auto-correlation method. By properly modeling the probability models of unvoiced/voiced of a frame, pitch transition probability models between frames/segments, the pitch detection can be change into a maximum likelihood (ML) problem. And, in the experiments, we can find the performance of the proposed statistical pitch detector will be better thane the pitch detection method in ESPS package. Finally, a multi-layer perceptron was used as a tone recognizer, 77% tone recognition rate was achieved.en_US
dc.language.isozh_TWen_US
dc.subject基頻軌跡zh_TW
dc.subject候選值zh_TW
dc.subject有聲/無聲zh_TW
dc.subject維特比搜尋zh_TW
dc.subject多層式類神經網路zh_TW
dc.subject線性回歸zh_TW
dc.subject刪除型zh_TW
dc.subject插入性zh_TW
dc.subjectpitch contouren_US
dc.subjectcandidateen_US
dc.subjectvoiced/unvoiceden_US
dc.subjectviterbi searchen_US
dc.subjectMLPen_US
dc.subjectlinear regressionen_US
dc.subjectdeletionen_US
dc.subjectinsertionen_US
dc.title利用統計方法之基週期偵測器與國語連續語音聲調辨認zh_TW
dc.titleStatistical Pitch Detection and Tone Recognition in Mandarin Speechen_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
顯示於類別:畢業論文