完整後設資料紀錄
DC 欄位語言
dc.contributor.author黃思瑋en_US
dc.contributor.authorSzu-Wei Huangen_US
dc.contributor.author王克陸en_US
dc.contributor.authorKeh-Luh Wangen_US
dc.date.accessioned2014-12-12T02:28:43Z-
dc.date.available2014-12-12T02:28:43Z-
dc.date.issued2001en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT900458016en_US
dc.identifier.urihttp://hdl.handle.net/11536/69103-
dc.description.abstract本論文主要是比較FANNC與BPN兩種類神經網路模型運用於共同基金績效評估時的表現。FANNC為一新提出的類神經網路模型,它結合了ART與Field theory模型的特性。在我們評估共同基金績效的實證研究中,FANNC運算的速度較BPN迅速得多,RMS亦以FANNC的結果較為優異。無論於共同基金績效分類問題或績效預測問題,其結果都以FANNC較為優異。zh_TW
dc.description.abstractThe purpose of this paper is to compare two different approaches, FANNC and BPN, in mutual fund performance evaluation. FANNC is a newly developed neural network which combines the features in ART and field theory. In our experiment, mutual fund performance can be evaluated much faster in FANNC approach than that in BPN approach. RMS is also superior for FANNC. These results hold for both classification problems and for prediction problems.en_US
dc.language.isoen_USen_US
dc.subject共同基金績效zh_TW
dc.subject類神經網路zh_TW
dc.subjectMutual Fund Performanceen_US
dc.subjectNeural Networken_US
dc.subjectFANNCen_US
dc.subjectBPNen_US
dc.title運用 FANNC 與 BPN 評估共同基金績效zh_TW
dc.titleEvaluating Mutual Fund Performance through FANNC and BPNen_US
dc.typeThesisen_US
dc.contributor.department管理科學系所zh_TW
顯示於類別:畢業論文