Full metadata record
DC FieldValueLanguage
dc.contributor.author黃明輝en_US
dc.contributor.authorMing-Hway Huangen_US
dc.contributor.author傅恆霖en_US
dc.contributor.authorHung-Lin Fuen_US
dc.date.accessioned2014-12-12T02:29:04Z-
dc.date.available2014-12-12T02:29:04Z-
dc.date.issued2001en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT900507002en_US
dc.identifier.urihttp://hdl.handle.net/11536/69296-
dc.description.abstract一個圖G的k圈填充是圖G邊中不互相相同的k圈集合。然而並不是所有的圖都可以被k圈填充,我們將剩下的邊集合所導出的子圖稱為這個裝填的殘留。能夠將殘留的部分邊數最少的裝填又稱為是最大的裝填。此時殘留的部分自然是最小殘留。
對應於裝填的觀念,我們也可考慮用k圈來覆蓋圖G。不夠的部分需加一些補丁,
如果補丁所用的邊數為最少,則此為最小覆蓋。
研究填充與覆蓋的問題已有百多年的歷史了,而最有名的題目就是完全圖的3圈填充。在此論文中我們著眼於5圈及 6圈的填充而考慮的圖形為平衡的完全多部分圖及兩個完全圖的卡笛森運算。
zh_TW
dc.description.abstractA $k$-$cycle$ $packing$ of a graph $G$ is a set of edge-disjoint
$k$-cycles in $G$. A $k$-cycle packing $C$ is $maximum$ if
$|C|\geq |C'|$ for all other $k$-cycle packings $C'$ of $G$. The
$leave$ $L$ of a packing $C$ is the subgraph induced by the set of
edges of $G$ that does not occur in any $k$-cycle of the packing
$C$. Therefore a maximum packing has a minimum leave.
A $k$-$cycle$ $covering$ of $G$ is a set of edge-disjoint
$k$-cycles $\mathcal{C}$ such that each edge of $E(G)$ occurs in
at least one $k$-cycle in $\mathcal{C}$. A $k$-cycle covering
$\mathcal{C}$ is $minimum$ if $|\mathcal{C}|\leq |\mathcal{C'}|$
for all other $k$-cycle coverings of $G$. The graph induced by the
set of edges which are added to $G$ in the covering is called the
$padding$ of the covering. Clearly, a minimum padding can be
obtained in a minimum covering.
The study of packing and covering problem commenced more than one
hundred years ago. The most famous one is a $3$-cycle packing
(respectively, covering) of the complete graph $K_{v}$. In case
that the leave of a 3-cycle packing is an empty graph, we have a
Steiner triple system of order $v$. It is indeed very closely
related to the study of combinatorial designs.
In this thesis, we shall focus on the study of 5-cycle and 6-cycle
packings (respectively, coverings). By considering $G$ as the
balanced complete multipartite graphs $K_{m(n)}$ and the Cartesian
product of two complete graphs $K_{m}\times K_{n}$, we have
obtained several results which will be presented in chatpers two
to six.
en_US
dc.language.isoen_USen_US
dc.subject圈填充zh_TW
dc.subject覆蓋zh_TW
dc.subject5圈zh_TW
dc.subject6圈zh_TW
dc.subject完全多部分圖zh_TW
dc.subject卡笛森運算zh_TW
dc.subjectpackingen_US
dc.subjectcycle packingen_US
dc.subjectmultipartite graphen_US
dc.subjectCartesian producten_US
dc.subject5-cyclesen_US
dc.subject6-cyclesen_US
dc.title圖的圈填充之研究zh_TW
dc.titlePacking Graphs with Cyclesen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis