完整後設資料紀錄
DC 欄位語言
dc.contributor.author蔡□杰en_US
dc.contributor.authorHeng-Chieh Tsaien_US
dc.contributor.author林朝枝en_US
dc.contributor.authorChau-Jy Linen_US
dc.date.accessioned2014-12-12T02:29:04Z-
dc.date.available2014-12-12T02:29:04Z-
dc.date.issued2001en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT900507006en_US
dc.identifier.urihttp://hdl.handle.net/11536/69300-
dc.description.abstract在這篇論文中,我們學習二次特徵值問題 ( A + B + C)x = 0 的數值解,其中A、B、C是n維的實矩陣且A是可逆矩陣。首先將二次特徵值問題轉換成較大的標準的特徵值問題 其中 是一個維度2n的矩陣。然後應用Householder轉換與QR迭代法去取得 矩陣的特徵值。為了在迭代的過程中能更快地得到特徵值,我們提供一個對QR迭代法的平行方法。這個對QR迭代法的平行方法在資料傳輸方面我們減少了約三分之二的資料傳輸時間。zh_TW
dc.description.abstractIn this paper, we study the numerical solution of the quadratic eigenvalue problem ( A + B + C)x = 0, where A, B, and C are real nxn matrices, and A is nonsingular. We transform the quadratic eigenvalue problem into an enlarged standard eigenvalue problem where is a matrix of order 2n. Then we apply the Householder method and the double-shift QR iteration to get the eigenvalues of matrix . In order to obtain the eigenvalues faster, we propose a parallel method for the double-shift QR iteration. Our parallel method for the double-shift QR iteration decreases data-transferring time to one-third.en_US
dc.language.isozh_TWen_US
dc.subject平行方法zh_TW
dc.subjectQR迭代法zh_TW
dc.subjectParallel Methoden_US
dc.subjectDouble-Shift QR Iterationen_US
dc.title在二次特徵值問題中對QR迭代法的平行方法zh_TW
dc.titleA Parallel Method for the Double-Shift QR Iteration in the Quadratic Eigenvalue Problemen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文