完整後設資料紀錄
DC 欄位語言
dc.contributor.author顏志霖en_US
dc.contributor.authorChih-Lin Yenen_US
dc.contributor.author梁耀文en_US
dc.contributor.authorDr. Yew-Wen Liangen_US
dc.date.accessioned2014-12-12T02:29:15Z-
dc.date.available2014-12-12T02:29:15Z-
dc.date.issued2001en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT900591058en_US
dc.identifier.urihttp://hdl.handle.net/11536/69430-
dc.description.abstract本篇論文主要是在探討壓縮機系統不穩定現象之偵測與診斷議題,為了提升偵測效率及診斷可靠度,本論文結合了model-based與signal-based偵測與診斷方法之優點。在model-based部分,由於FIDF偵測方法具有快速及抗雜訊之特性,本論文選用FIDF設計法做為model-based的偵測方法,此外,為提升偵測的可靠度並提供壓縮機系統產生不穩定現象的類型,本論文採用FIDF所產生的殘量利用傅立葉轉換及自適應性模糊邏輯系統作為診斷的工具。模擬結果也驗証了所提出的整合方法之有效性。zh_TW
dc.description.abstractThis thesis studies the detection and diagnosis issues of compressor’s instabilities. In order to promote the detection efficiency and diagnosis reliability, this thesis combines the advantages of model-based and signal-based fault detection and diagnosis techniques. In this study, Fault Identification Filter (FIDF) design method was adopted as the model-based method because the FIDF design has the features of fast response and insensitivity to noises. In addition, the residual signal produced by FIDF design was employed to improve the detection reliability and to diagnose the type of instabilities by an adaptive fuzzy logic system. Simulation results demonstrate the effectiveness of the proposed scheme.en_US
dc.language.isozh_TWen_US
dc.subject以模型為基礎zh_TW
dc.subject以訊號為基礎zh_TW
dc.subject激喘zh_TW
dc.subject旋轉失速zh_TW
dc.subject偵測和診斷zh_TW
dc.subject自適應性模糊邏輯系統zh_TW
dc.subjectmodel-baseden_US
dc.subjectsignal-baseden_US
dc.subjectsurgeen_US
dc.subjectrotating stallen_US
dc.subjectdetection and diagnosisen_US
dc.subjectadptive fuzzy logic systemen_US
dc.title壓縮機不穩定現象之偵測:結合模型與信號為基礎之技術zh_TW
dc.titleDetection of Compressor Instabilities:Combining Model-Based and Signal-Based Techniquesen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
顯示於類別:畢業論文