Full metadata record
DC FieldValueLanguage
dc.contributor.author張結雄en_US
dc.contributor.authorChieh-Hsiung Changen_US
dc.contributor.author鄭木火en_US
dc.contributor.authorMu-Huo Chengen_US
dc.date.accessioned2014-12-12T02:29:16Z-
dc.date.available2014-12-12T02:29:16Z-
dc.date.issued2001en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT900591075en_US
dc.identifier.urihttp://hdl.handle.net/11536/69443-
dc.description.abstract本論文使用資料礦析技術中之統計方法,發展離子植入製程之錯誤偵測與錯誤診斷系統。在偵測系統中,我們分別使用貝氏分類法、自然貝氏分類法與主成分分析結合自然貝氏分類法來建立三種偵測系統。而錯誤診斷系統上則是使用貝氏網路方法與貝氏定理來建立。我們並以實際離子植入製程中由SECSII所量測之資料來驗證此偵測與診斷系統之性能。其結果證明此二系統皆具有滿意的錯誤偵測與診斷效果。我們預期此偵測與診斷系統 可顯著提升離子植入製程的穩定性、使用率、製程良率與可靠度。zh_TW
dc.description.abstractIn this thesis, the statistial approach of the data mining techniques is used to develop a fault detection and diagnosis system for the ion-implantation process. Three fault detection systems are developed using, respectively, the Bayesian, the naive Bayesian, and the principal component analysis(PCA) with the naive Bayesian. The fault diagnosis system is designed based on the Bayesian network and Bayes' theorem. The performance of fault detection and diagnosis is evaluated by the real data of ion-implantation process obtained via SECSII. Experimental results demonstrate that the success rate of fault detection and diagnosis system is satisfactory. This sytem is expected to increase the stability, utility rate, yield, and reliability of the ion-implantation process.en_US
dc.language.isozh_TWen_US
dc.subject資料礦析zh_TW
dc.subject貝氏分類法zh_TW
dc.subject自然貝氏分類法zh_TW
dc.subject主成分分析zh_TW
dc.subject貝氏網路方法zh_TW
dc.subject離子植入製程zh_TW
dc.subject錯誤偵測與診斷系統zh_TW
dc.subjectData miningen_US
dc.subjectBayesianen_US
dc.subjectNaive Bayesianen_US
dc.subjectPrincipal component analysis(PCA)en_US
dc.subjectBayesian networken_US
dc.subjectIon-implantation processen_US
dc.subjectFault detection and diagnosis systemen_US
dc.title使用主成分分析及貝氏網路方法於離子植入製程之錯誤偵測與診斷zh_TW
dc.titlePCA and Bayesian Network for Fault Detection and Diagnosis of Ion-Implantation Processen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
Appears in Collections:Thesis