完整後設資料紀錄
DC 欄位語言
dc.contributor.author唐良萍en_US
dc.contributor.authorLiang-Ping Tangen_US
dc.contributor.author曾國雄en_US
dc.contributor.authorGwo-Hshiung Tzengen_US
dc.date.accessioned2014-12-12T02:29:29Z-
dc.date.available2014-12-12T02:29:29Z-
dc.date.issued2001en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT900685011en_US
dc.identifier.urihttp://hdl.handle.net/11536/69555-
dc.description.abstract近年台灣汽車業蓬勃發展,市場日趨競爭,改善銷售服務品質,提高顧客滿意,已為各業者極為重要的競爭策略。本研究針對「服務品質」評估問題,屬質化多準則決策,且準則間存在非獨立性,從以往學者既有研究基礎出發,建置有效的「模糊多準則非加法型評估方法」,其處理步驟摘述如后: 1. 依據文獻與業界評鑑資料,蒐整汽車銷售業務服務品質有關的「準則」; 2. 利用因子分析掌握關鍵性變異,簡化「準則」、歸類「構面」,建立階層分析架構,降低評估的複雜性; 3. 利用模糊理論,將評估資料以三角模糊數表示,使評估者的主觀、模糊與不確定性能更準確表達,增加被使用數據的客觀性。 4. 利用三角模糊數替代單一明確值,作為模糊測度與模糊積分之基本運算資料,擴展多準則非加法型評估方法的實用範圍。 5. 利用灰關聯分析僅須少樣本數據、無分佈要求之特性,將模糊理論與灰色理論有效結合使用,建立灰關聯排序模式。 「模糊多準則非加法型評估方法」建立後,進行N牌汽車各區經銷商服務品質之評估,藉以驗證模式合理性與實用性,並提供業者建立改善銷售服務品質之參考。zh_TW
dc.description.abstractAs the automobile market is blooming and competition gets fierce, to increase customer satisfaction by improving sales quality has become an important strategy in Taiwan’s automobile industry. This research focuses on service quality evaluation with respect to qualitative multi-criteria and inter-criterion dependence, and constructs an effective “fuzzy multi-criteria non-additive evaluation method” based on previous researchers’ studies. The steps to construct the model are described as below: 1. To collect quality-related criteria of automobile sales service according to literature studies and business assessment. 2. To simplify criteria and categorize various objectives by employing factor analysis to control critical variances, and construct a framework of hierarchical analysis to reduce complexity of evaluation. 3. To express evaluated data in terms of triangular fuzzy numbers, which could overcome subjectivity, fuzziness, and uncertainty of assessors and interpret more accurately and enhance the usability of data. 4. To replace the single and precise values employed by fuzzy measure and fuzzy integral with triangular fuzzy numbers, and then expand the utility of multi-criteria non-additive evaluation method. 5. To combine Fuzzy and Grey theory to establish a ranking model enabled by Grey Relation Analysis’s characteristics of requiring only a small number of sample data. After the methodology is established, it will be employed in brand N car’s regional agencies’ sales service quality assessment to validate the model’s rationality and utility, and help business to improve their sales service quality.en_US
dc.language.isozh_TWen_US
dc.subject服務品質zh_TW
dc.subject多準則評估zh_TW
dc.subject因子分析zh_TW
dc.subject層級分析法zh_TW
dc.subject模糊測度zh_TW
dc.subject模糊積分zh_TW
dc.subject灰關聯分析zh_TW
dc.subject模糊多準則非加法型評估方法zh_TW
dc.subjectservice qualityen_US
dc.subjectmultiple criteria decision makingen_US
dc.subjectfactor analysisen_US
dc.subjectanalytical hierarchy processen_US
dc.subjectfuzzy measureen_US
dc.subjectfuzzy integralen_US
dc.subjectgrey relationen_US
dc.subjectfuzzy multi-criteria non-additive evaluationen_US
dc.title模糊多準則非加法型評估之研究∼以「汽車銷售服務品質」為例zh_TW
dc.titleA Fuzzy MCDM Framework with the Non-Additive Evaluation for Service Quality Performance: Case of Automobile Salesen_US
dc.typeThesisen_US
dc.contributor.department管理學院科技管理學程zh_TW
顯示於類別:畢業論文