Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Yifanen_US
dc.date.accessioned2014-12-08T15:09:07Z-
dc.date.available2014-12-08T15:09:07Z-
dc.date.issued2009-07-15en_US
dc.identifier.issn0021-8693en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jalgebra.2009.04.012en_US
dc.identifier.urihttp://hdl.handle.net/11536/6955-
dc.description.abstractIn this article, we consider the group F(1)(infinity)(N) of modular units on X(1)(N) that have divisors supported on the cusps lying over infinity of X(0)(N), called the infinity-cusps. For each positive integer N, we will give an explicit basis for the group F(1)(infinity)(N). This enables us to compute the group structure of the rational torsion subgroup l(1)(infinity)(N) of the Jacobian J(1)(N) of X(1)(N) generated by the differences of the infinity-cusps. In addition, based on our numerical computation, we make a conjecture on the structure of the p-primary part of l(1)(infinity)(p(n)) for a regular prime p. (C) 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleModular units and cuspidal divisor class groups of X(1)(N)en_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jalgebra.2009.04.012en_US
dc.identifier.journalJOURNAL OF ALGEBRAen_US
dc.citation.volume322en_US
dc.citation.issue2en_US
dc.citation.spage514en_US
dc.citation.epage553en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
Appears in Collections:Articles