標題: 原子轉移自由基聚合反應製備矽酸鹽層/聚苯乙烯奈米複合材料及性質分析
Synthesis and Characterization of Layered Silicate/Polystyrene Nanocomposites by Atom Transfer Radical Polymerization
作者: 黃清茂
Ching-Mao Haung
韋光華
Kung-Hwa Wei
材料科學與工程學系
關鍵字: 原子轉移自由基聚合;矽酸鹽層;聚苯乙烯;奈米複合材料;Atom Transfer Radical Polymerization;Layered Silicate;Polystyrene;Nanocomposites;PS;ATRP;Magadiite
公開日期: 2002
摘要: 本論文將以原子轉移自由基聚合反應(ATRP)應用在矽酸鹽層/聚苯乙烯奈米複合材料的製作並進行結構的鑑定與基本性質分析。矽酸鹽層(Magadiite)的製備,首先使用SiO2、H2O及NaOH,以水熱法合成Na-Magadiite,再用鹽酸(H+)與Na- Magadiite作陽離子交換反應,合成H-Magadiite。將H-Magadiite與偶合劑(Coupling Agent) 3-Aminopropyl dimethylethoxysilane (1OEt-NH2)、3-Aminopropyl methyldiethoxysilane (2OEt-NH2) 及3-Aminopropyl triethoxysilane (3OEt-NH2)與H-Magadiite進行Silylation反應,製備具有-NH2反應官能基的NH2-Magadiite。將NH2-Magadiite與具有ATRP起始劑結構之2-Bromopropionyl Bromide反應合成Initiator-Magadiite,並利用XRD、固態NMR、TEM、EA及SEM分析各種Magadiite。 Magadiite/聚苯乙烯奈米複合材料的製備是以CuBr 和bipyridine構成有機金屬催化劑加入不同含量的Initiator-Magadiite與固定量的苯乙烯單體在丙酮溶液中進行ATRP合成Magadiite/聚苯乙烯奈米複合材料溶液,再以甲醇作再沉澱純化形成Magadiite/聚苯乙烯奈米複合材料粉體。 Magadiite/聚苯乙烯奈米複合材料的各項物性因為加入人工合成矽酸鹽層而提升。經TGA的分析,發現加了約4%(A100-PS)的Initiator-Magadiite使Magadiite/聚苯乙烯奈米複合材料的熱裂解溫度(Td)較純的PS提升了35.5℃。經DSC的分析,Magadiite/聚苯乙烯奈米複合材料的玻璃轉移溫度(Tg)皆比純的聚苯乙烯溫度高。
Covalently bonded Layered Silicate/Polystyrene nanocomposites have been synthesized by modified Magadiite and Atom Transfer Radical Polymerization. Modified Magadiite and the thermal properties of Magadiite/Polystyrene nanocomposites were investigated. Na+-Magadiite was cation-exchanged with H+ to form H-Magadiite. H-Magadiite was silyated with 3-Aminopropyl dimethylethoxysilane (1OEt-NH2)、3-Aminopropyl methyldiethoxysilane (2OEt-NH2) and 3-Aminopropyl triethoxysilane (3OEt-NH2)) in DMF to form NH2-Magadiite. NH2-Magadiite was grafted by 2-Bromopropionyl Bromide (an initiator of ATRP) to form Initiator-Magadiite. All kinds of Magadiite were characterized by XRD、Solid-State NMR、TEM、EA and SEM. Then, Magadiite/Polystyrene nanocomposites were prepared by Initiator-Magadiite、CuBr、bipyridine and styrene monmer. The degradation temperature (Td), at 5% weight loss, of A100-PS nanocomposites was 35.5℃ higher than that of pure PS. The glass transition temperature (Tg) of A25-PS nanocomposites was 11. 5℃ higher than that pure PS.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT910159027
http://hdl.handle.net/11536/69914
Appears in Collections:Thesis