完整後設資料紀錄
DC 欄位語言
dc.contributor.author薛瑛萱en_US
dc.contributor.authorYing-Hsuan Hsuehen_US
dc.contributor.author洪志真en_US
dc.contributor.author洪慧念en_US
dc.contributor.authorJyh-Jen Horng Shiauen_US
dc.contributor.authorHui-Hien Hungen_US
dc.date.accessioned2014-12-12T02:30:08Z-
dc.date.available2014-12-12T02:30:08Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910337006en_US
dc.identifier.urihttp://hdl.handle.net/11536/70036-
dc.description.abstract微生物晶片資料通常包含不到100個腫瘤樣本及5000-10000個基因。這樣的問題稱為"大p,小n"的問題。 也就是要解決的問題有很多的變數(基因)但個體數(腫瘤樣本)很少。 我們在本文中回顧了一些統計學家對此類問題的處理。 我們著重的方法是support vector machines (SVM), 將從模擬實驗去探討在SVM方法中, 決策函數(decision function) 中的基因比重不同對重要基因選擇(gene selection)的影響, 標準化(normalizattion)的重要性,以及決策函數(decision function)與核 (kernel)的關係。zh_TW
dc.description.abstractMicroarray datasets typically contain expression data on 5000 - 10000 genes for less than 100 samples. It presents a "large p, small n" problem, that is, to solve a statistical problem with a very large number of variables (genes) by using a small number of observations (cell samples). Some papers dealing with this problem are reviewed. Support vector machines (SVM) has been a popular method in microarray data analysis. This paper studies the following three issues. (1) How the weights of the genes in the decussion function affect the gene selection; (2) the importance of the data normalization; and (3) the relationship between the decussion function and the kernel function used in SVM.en_US
dc.language.isoen_USen_US
dc.subjectSVMzh_TW
dc.subject基因選擇zh_TW
dc.subjectsupport vector machinesen_US
dc.subjectgene selectionen_US
dc.titleSVM在基因選擇之研究zh_TW
dc.titleA Study on Support Vector Machines in Gene Selectionen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文