Full metadata record
DC FieldValueLanguage
dc.contributor.author陳永穆en_US
dc.contributor.authorYung-Mu Chenen_US
dc.contributor.author徐力行en_US
dc.contributor.author譚建民en_US
dc.contributor.authorLih-Hsing Hsuen_US
dc.contributor.authorJimmy J.M. Tanen_US
dc.date.accessioned2014-12-12T02:30:24Z-
dc.date.available2014-12-12T02:30:24Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910394008en_US
dc.identifier.urihttp://hdl.handle.net/11536/70181-
dc.description.abstract雙扭超方體(twisted cube)是由Hilbers 等人利用特定的規則來改變超立方體(hypercube)原有連結所得到。近年來已經有不少有關雙扭超方體的研究,在這篇論文裡,我們將利用已知雙扭超方體的容錯漢米爾頓性質、容錯漢米爾頓連結性質,和泛圈性質,來證明一個n階層的雙扭超方體,即使是壞了n-2個點(node)或邊(edge)依然保有泛圈性質,而且這個結果是最佳的.zh_TW
dc.description.abstractThe Twisted cube, first proposed by Hilbers et al., is derived by changing some connection of hypercube, according to specific rules. In recent years, many topological properties of this variation have been studied, it has been proven that it is a pancyclic network.. Besides, Huang et al. also showed that a n-dimentional twisted cubeis is (n-2) fault-tolerant hamiltonian and (n-3) fault-tolerant hamiltonian connected. According to these properties, in this paper, we will prove that a n-dimentional twisted cube is a (n-2) fault-tolerant pancyclic network.en_US
dc.language.isoen_USen_US
dc.subject容錯zh_TW
dc.subject雙扭超方體zh_TW
dc.subject泛圈zh_TW
dc.subjectfault-toleranten_US
dc.subjecttwisted cubesen_US
dc.subjectpancyclicen_US
dc.title雙扭超方體之容錯泛圈性質zh_TW
dc.titleFault-Tolerant Pancyclicity of Twisted Cubeen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
Appears in Collections:Thesis