Full metadata record
DC FieldValueLanguage
dc.contributor.author鄭斐文en_US
dc.contributor.authorFei-Wen Chengen_US
dc.contributor.author徐力行en_US
dc.contributor.authorLih-Hsing Hsuen_US
dc.date.accessioned2014-12-12T02:30:24Z-
dc.date.available2014-12-12T02:30:24Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910394010en_US
dc.identifier.urihttp://hdl.handle.net/11536/70183-
dc.description.abstract在這篇論文當中,我們討論遞迴式循環圖,$G(N,d)$,的泛圈容錯性質。$G(N,d)$,是由Park及Chwa在1994年提出。他們同時也證明出$G(cd^k,d)$是正則圖。我們假設$F$為在$G(cd^k,d)$裡的任意錯誤集合,其中$F\subset E(G(cd^k,d))\cup V(G(cd^k,d))$。在這篇論文中,我們證明$G(cd^k,d)-F$其中$|F|\leq deg(G(cd^k,d))-2$是弱泛圈性質當c是奇數而且$c\geq 3$。換句話說,此上限是最佳的。zh_TW
dc.description.abstractIn this thesis, we consider the weakly pancyclic property on the faulty recursive circulant graph, $G(N,d)$. $G(N,d)$ was proposed in 1994 by Park and Chwa \cite{Park}. They also proved that $G(cd^k,d)$ is regular graph. Let $F$ be any faulty set in $G(cd^k,d)$ such that $F\subset E(G(cd^k,d))\cup V(G(cd^k,d))$. In this thesis, we proved that $G(cd^k,d)-F$ with $|F|\leq deg(G(cd^k,d))-2$ is weakly pancyclic where $c$ is odd, and $c\geq 3$. Moreover, this bound is tight.en_US
dc.language.isozh_TWen_US
dc.subject容錯zh_TW
dc.subject弱泛圈性質zh_TW
dc.subject遞迴式循環圖zh_TW
dc.subjectfault-toleranten_US
dc.subjectweakly pancyclicen_US
dc.subjectrecursive circulant graphen_US
dc.title遞迴式循環圖泛圈容錯性質研究zh_TW
dc.titleFault-Tolerant Pancyclicity of Recursive Circulant Graphsen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
Appears in Collections:Thesis