Full metadata record
DC FieldValueLanguage
dc.contributor.author帥嘉珍en_US
dc.contributor.authorJia-Jane Shuaien_US
dc.contributor.author黎漢林en_US
dc.contributor.authorHan-Lin Lien_US
dc.date.accessioned2014-12-12T02:30:26Z-
dc.date.available2014-12-12T02:30:26Z-
dc.date.issued2004en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT008834806en_US
dc.identifier.urihttp://hdl.handle.net/11536/70223-
dc.description.abstract本文提出結合約略集合理論(Rough Set Theory)及資料包絡分析法(DEA)之混合式模型,利用企業歷史資料來建構一財務預警系統。資料包絡分析法善於處理財務上量化的資料,約略集合理論則適用於非財務資料的預測。資料包絡分析法與約略集合理論常被實務上所使用,但各有其限制。本研究所提出rough set DEA這種混合模型,兼採兩種模型的優點,而無其限制。本研究採用的樣本資料為台灣2002年至2003年電子業427家公司的財務資料。實驗結果顯示此種混合模式,對於財務預警之效果相當顯著。zh_TW
dc.description.abstractThis paper proposes a hybrid approach that predicts the failure of firms based on the past business data, combining rough set approach and worst practice data envelopment analysis (DEA). The worst practice DEA can identify worst performers (in quantitative financial data) by placing them on the frontier while the rules developed by rough set uses non-financial information to predict the characteristics of failed firms. Both DEA and rough set are commonly used in practice. However, they also have limitations. The hybrid model rough set DEA takes the best of both models, by avoiding the pitfalls of each. For the experiment, the financial data of 427 Taiwan firms from the electronic industry during the period 2002–2003 were selected. The results show that the hybrid approach is a promising alternative to the conventional methods for failure prediction.en_US
dc.language.isoen_USen_US
dc.subject財務預警zh_TW
dc.subject約略集合理論zh_TW
dc.subject資料包絡分析法zh_TW
dc.subject績效分析zh_TW
dc.subjectFirm Performanceen_US
dc.subjectRough Set Theoryen_US
dc.subjectData Envelopment Analysisen_US
dc.subjectTechnical Efficiencyen_US
dc.title結合約略集合理論與分層資料包絡分析之財務預警模式zh_TW
dc.titleA Hybrid Model for Business Failure Prediction- Utilization of Rough Set Theory and Layered DEA Conceptsen_US
dc.typeThesisen_US
dc.contributor.department資訊管理研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 480601.pdf
  2. 480602.pdf
  3. 480603.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.