完整后设资料纪录
DC 栏位语言
dc.contributor.author洪健仁en_US
dc.contributor.authorChien-Jen Hungen_US
dc.contributor.author李镇宜en_US
dc.contributor.authorChen-Yi Leeen_US
dc.date.accessioned2014-12-12T02:30:46Z-
dc.date.available2014-12-12T02:30:46Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910428111en_US
dc.identifier.urihttp://hdl.handle.net/11536/70440-
dc.description.abstract采用直接序列展频调变的标准包含802.11, 802.11b以及802.11g等无线区域网路系统。无线通讯使用空气当作介质,比有线通讯多了更多的不确定性,因此,无线通讯系统的封包里一般都会定义preamble栏位作为接收端同步之用。
在本论文中,我们想利用经过Barker码展频过的preamble栏位来消除通道中的非理想效应,例如高斯杂讯、载波频率误差、载波相位误差、以及取样频脉误差等等。于是,我们提出了应用差异解码概念的符号(symbol)同步、频率同步、相位同步、以及时间同步等演算法来处理这些非理想效应。
我们所提出的演算法中,接收器只需要利用PLCP中的preamble栏位就可以得知通道的重要参数,而不须MPDU的任何协助,此法可减低互补编码(CCK)解码器的成本,其成本占了整个收发器的大部分。此法更对802.11g有助益,因为802.11g中有CCK-OFDM模式,也就是Barker码展频的PLCP接上正交多工分频(OFDM)的MPDU。
为了瞭解整个系统,我们使用Matlab建立了系统模拟平台。我们可以观察系统中任一讯号的波形,并且可以得知通道中的非理想效应对整个系统或某些讯号有何影响。此平台更可以用来验证我们所提出的同步演算法,本论文中也放了一些模拟结果图。
我们也讨论了系统关键零组件的架构、实现方法以及设计成本。
最后,点出了未完成的部分和一些构想,可作为未来修改的参考。
zh_TW
dc.description.abstractDirect sequence spread spectrum (DSSS) technique is used in IEEE 802.11, 802.11b and 802.11g wireless LAN systems. Unlike the wire channel, wireless communication uses radio as its medium and has more uncertainty with it. Therefore, WLAN frame format generally contains preamble field for synchronization.
We would like to use the Barker spread preamble field to eliminate non-ideal channel effects including Additive White Gaussian Noise (AWGN), carrier frequency offset (CFO), carrier phase offset (CPO), and sampling clock offset. Therefore, symbol synchronization, frequency synchronization, phase synchronization and timing synchronization algorithms based on differential decoding concept were proposed.
With our algorithms, the receiver would extract all the channel parameters only with the PLCP preambles and does not need any help from the MPDU which would reduce the CCK demodulator cost where dominates the cost of the system. These algorithms would benefit the IEEE 802.11g system which has the CCK-OFDM mode, the frame consists of the Barker PLCP and OFDM MPDU.
To get familiar with IEEE standards, simulation platforms were set up with Matlab mathematical software which let us have a chance to probe signals in every place inside the system and visual view of the channel effects including CFO, AWGN, clock drift and even multipath. With this platform, our algorithms could be verified. Some simulation results were shown in this thesis. Architectures of key components were discussed and gate counts of which were listed as well.
en_US
dc.language.isoen_USen_US
dc.subject无线区域网路zh_TW
dc.subject直接序列展频zh_TW
dc.subject基频处理器zh_TW
dc.subject同步演算法zh_TW
dc.subject无线通讯zh_TW
dc.subject载波频率误差zh_TW
dc.subject互补编码zh_TW
dc.subject802.11ben_US
dc.subjectDSSSen_US
dc.subjectsynchronizationen_US
dc.subjectWLANen_US
dc.subjectwireless LANen_US
dc.subjectbaseband processoren_US
dc.subjectBarkeren_US
dc.subjectCCKen_US
dc.title一个应用于直接序列展频无线区域网路使用差异解码技术之基频处理器zh_TW
dc.titleA Differential Decoding Based Baseband Processor for DSSS Wireless LAN Applicationsen_US
dc.typeThesisen_US
dc.contributor.department电子研究所zh_TW
显示于类别:Thesis