完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | 羅應順 | en_US |
| dc.contributor.author | Ying-Shuen Lo | en_US |
| dc.contributor.author | 陳信宏 | en_US |
| dc.contributor.author | Sin-Horng Chen | en_US |
| dc.date.accessioned | 2014-12-12T02:31:00Z | - |
| dc.date.available | 2014-12-12T02:31:00Z | - |
| dc.date.issued | 2004 | en_US |
| dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009213621 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/70623 | - |
| dc.description.abstract | 在本論文中,我們建立一個自發性中文對話語音辨識基本系統架構,探討中文語音及自發性語料的特殊語音現象,如感嘆詞(particles)、不確定語音發音(uncertain sounds)、非語音聲音(paralinguistic sounds)等。我們使用中研院提供的八段雙人對話語料庫做實驗,最後,獲得的音節辨識率約為56.4% (引入語音模型)。除此之外,在我們的系統裡,我們使用KPCA(kernel principal components analysis)方法,去進行基本音節HMM模型分裂,來模擬發音變異現象。 | zh_TW |
| dc.description.abstract | In the thesis,a basic spontaneous Mandarin speech recognition is established. The study focuses on the acoustic modeling for 411 Mandarin base-syllables as well as some special phenomena of spontaneous speech such as particles, uncertain sounds, and paralinguistic phenomena. Performance of the database called MCDC (Mandarin Conversational Dialogue Corpus). Finally, A syllable accuracy rate of 56.4% with adapted language model. In addition,the kernel principal components analysis (KPCA) method is used to split the base-syllable HMM models in order to model the pronunciation variation in our system. | en_US |
| dc.language.iso | zh_TW | en_US |
| dc.subject | 自發性中文對話語音辨識 | zh_TW |
| dc.subject | 發音變異 | zh_TW |
| dc.subject | Spontaneous Mandarin speech recognition | en_US |
| dc.subject | pronunciation variation | en_US |
| dc.title | 自發性中文語音基本辨認系統之建立 | zh_TW |
| dc.title | An Implementation of Spontaneous Mandarin Speech Recognition Baseline System | en_US |
| dc.type | Thesis | en_US |
| dc.contributor.department | 電信工程研究所 | zh_TW |
| 顯示於類別: | 畢業論文 | |

