完整後設資料紀錄
DC 欄位語言
dc.contributor.author陳冠帆en_US
dc.contributor.authorGuan-Fan Chenen_US
dc.contributor.author傅恆霖en_US
dc.contributor.authorHung-Lin Fuen_US
dc.date.accessioned2014-12-12T02:31:28Z-
dc.date.available2014-12-12T02:31:28Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910507003en_US
dc.identifier.urihttp://hdl.handle.net/11536/70936-
dc.description.abstract一個圖 的t-裝填是一族G的子圖H1,H2,...,Ht;任兩個圖同構而且沒有共同邊,同時每個圖的邊數恰為[|E(G)|/t]。一個圖G的t-覆蓋是一族彼此同構的t個圖H1,H2,...,Ht其中每個圖的邊數為[|E(G)|/t]+1而且G中所有邊包含在所有H的邊的聯集中。 在這一篇論文中,我們研究t-裝填(或t-覆蓋)中所產生的剩餘圖(增加圖)。對於所有t不大於6,我們把完全圖的所有可能在 -裝填(或 -覆蓋)所產生的剩餘圖(增加圖)全部找出來。zh_TW
dc.description.abstractA t-packing of a graph G is a collection of t edge-disjoint isomorphic subgraphs of G such that each subgraph is of size [|E(G)|/t]. A t-covering of a graph G is a collection of t edge-disjoint isomorphic graphs H1,H2,...,Ht such that all edges of G contians in all union of edges of H's. In this thesis, we study the remainder graph (respectively, surplus graph) of each t-packing (respectively, t-covering) of the complete graph. For t is small than six, we determine all possible remainder graphs and respectively surplus graphs.en_US
dc.language.isoen_USen_US
dc.subject裝填zh_TW
dc.subject裝填zh_TW
dc.subjectt-packingen_US
dc.subjectt-coveringen_US
dc.subjectpackingen_US
dc.subjectcoveringen_US
dc.titlet-裝填與t-覆蓋zh_TW
dc.titleA study of t-packing and t-coveringen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文