完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 徐恭銘 | en_US |
dc.contributor.author | Kung-Ming Hsu | en_US |
dc.contributor.author | 徐力行 | en_US |
dc.contributor.author | 陳秋媛 | en_US |
dc.contributor.author | Lih-Hsing Hsu | en_US |
dc.contributor.author | Chiuyuan Chen | en_US |
dc.date.accessioned | 2014-12-12T02:31:30Z | - |
dc.date.available | 2014-12-12T02:31:30Z | - |
dc.date.issued | 2002 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT910507014 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/70947 | - |
dc.description.abstract | 令U為連通的平面的立方漢米爾頓圖所成之集合,A為U中所有漢米爾頓的單點漢米爾頓圖所成之集合,B為U中所有單邊漢米爾頓圖所成之集合,C為U中所有漢米爾頓連通圖所成之集合。根據集合A、B與C互斥與交集的運算,U被分成8個集合。在這一篇文章中我將要證明這8個集合為無限的。 | zh_TW |
dc.description.abstract | Let U be the set of connected planar cubic hamiltonian graphs, A be the set of hamiltonian 1-vertex hamiltonian graphs in U, B be the set of 1-edge hamiltonian graphs in U, and C be the set of hamiltonian connected graphs in U. With the and/or exclusion of the sets A,B, and C, U is divided into eight subsets. In this paper, we prove that there are infinitely many elements in each of the eight subsets. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 漢米爾頓 | zh_TW |
dc.subject | 漢米爾頓連通 | zh_TW |
dc.subject | 平面圖 | zh_TW |
dc.subject | hamiltonian | en_US |
dc.subject | hamiltonian connected | en_US |
dc.subject | planar | en_US |
dc.title | 不同種類的立方漢米爾頓圖 | zh_TW |
dc.title | Cubic Hamiltonian Graphs of Various Types | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |