完整後設資料紀錄
DC 欄位語言
dc.contributor.author徐恭銘en_US
dc.contributor.authorKung-Ming Hsuen_US
dc.contributor.author徐力行en_US
dc.contributor.author陳秋媛en_US
dc.contributor.authorLih-Hsing Hsuen_US
dc.contributor.authorChiuyuan Chenen_US
dc.date.accessioned2014-12-12T02:31:30Z-
dc.date.available2014-12-12T02:31:30Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910507014en_US
dc.identifier.urihttp://hdl.handle.net/11536/70947-
dc.description.abstract令U為連通的平面的立方漢米爾頓圖所成之集合,A為U中所有漢米爾頓的單點漢米爾頓圖所成之集合,B為U中所有單邊漢米爾頓圖所成之集合,C為U中所有漢米爾頓連通圖所成之集合。根據集合A、B與C互斥與交集的運算,U被分成8個集合。在這一篇文章中我將要證明這8個集合為無限的。zh_TW
dc.description.abstractLet U be the set of connected planar cubic hamiltonian graphs, A be the set of hamiltonian 1-vertex hamiltonian graphs in U, B be the set of 1-edge hamiltonian graphs in U, and C be the set of hamiltonian connected graphs in U. With the and/or exclusion of the sets A,B, and C, U is divided into eight subsets. In this paper, we prove that there are infinitely many elements in each of the eight subsets.en_US
dc.language.isozh_TWen_US
dc.subject漢米爾頓zh_TW
dc.subject漢米爾頓連通zh_TW
dc.subject平面圖zh_TW
dc.subjecthamiltonianen_US
dc.subjecthamiltonian connecteden_US
dc.subjectplanaren_US
dc.title不同種類的立方漢米爾頓圖zh_TW
dc.titleCubic Hamiltonian Graphs of Various Typesen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文