完整後設資料紀錄
DC 欄位語言
dc.contributor.author李育明en_US
dc.contributor.authorYu-Ming Leeen_US
dc.contributor.author傅恆霖en_US
dc.contributor.author黃國卿en_US
dc.contributor.authorHung-Lin Fuen_US
dc.contributor.authorKuo-Ching Huangen_US
dc.date.accessioned2014-12-12T02:31:31Z-
dc.date.available2014-12-12T02:31:31Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910507016en_US
dc.identifier.urihttp://hdl.handle.net/11536/70949-
dc.description.abstract一個度數為δ的正則圖, 如果最小圈的長度為g, 則此圖形稱為(δ,g)-圖. 而其中點數最少的稱為(δ,g)-籠. 一個圖若是每個切集至少包含有κ個點的話, 則此圖形為κ-連通. Marcote等人證明了, 當δ≧5且g≧10的時候, (δ,g)-籠為4-連通, 在這篇論文中, 我們證明每一個δ≧5的(δ,8)-籠和(δ,9)-籠都是4-連通.zh_TW
dc.description.abstractA regular graph G of degree δ and girth g is said to be a (δ, g)-graph, and a (δ, g)- cage is a smallest graph among all (δ, g)-graphs. A graph is κ-connected if every cutset has cardinality at least κ. It was proved by Marcote et al that a (δ, g)-cage is 4-connected provided that δ≧5 and g≧10. In this thesis, we prove that every (δ, 8)-cage and (δ, 9)-cage is 4-connected with δ≧5.en_US
dc.language.isoen_USen_US
dc.subjectzh_TW
dc.subject連通數zh_TW
dc.subject正則zh_TW
dc.subjectcageen_US
dc.subjectconnectivityen_US
dc.subjectregularen_US
dc.title小型籠的連通數zh_TW
dc.titleConnectivity of Small Cagesen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文