完整後設資料紀錄
DC 欄位語言
dc.contributor.author黃瑞文en_US
dc.contributor.authorJui-Wen Huangen_US
dc.contributor.author林進燈en_US
dc.contributor.authorChin-Teng Linen_US
dc.date.accessioned2014-12-12T02:31:35Z-
dc.date.available2014-12-12T02:31:35Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910591013en_US
dc.identifier.urihttp://hdl.handle.net/11536/70997-
dc.description.abstract在本論文中,我們提出新的詞語不相關的語者辨識技術。主要成分分析(PCA)分解法被廣泛地應用於特徵抽取的過程。此分解法可從輸入的向量群中,找出其相互正交的主要成分。我們可以透過得到的主要成分進行維度縮減的動作。一開始,我們必須利用同時具備時間與頻率特性的特徵,來建構一個共變異矩陣。接著,使用 PCA 找出轉換矩陣,以求取更好更有辨認能力的特徵。然而,實驗結果證明這種做法的辨認率不夠高。因此我們提出一些能夠增進辨認率的方法。 首先,我們使用另一種稱為獨立成分分析(ICA)的分解法來達成特徵轉換的動作。ICA 在近年來逐漸被大量的使用於各種應用層面,這是由於其具備有將所輸入的向量群中相互獨立的成分分解出來的能力。相對於使用 PCA 基底,利用 ICA 基底進行轉換所得的特徵進行語者辨認,我們可以得到最多 3.61% 的改進。 除此之外,我們還在系統中加入基因演算法(GA),GA 是一種找尋最佳解的的工具。我們希望能應用 GA 來達到維度縮減,而同時又能保持良好辨認率。GA 能夠從所有的 ICA 基底中,找出能夠提供最佳辨認率的基底組合。相對於隨機選取的基底組合,GA 所挑選出的基底組合得到的語者辨認率最多可獲得 4.17% 的改善;其辨認率甚至優於使用所有的 PCA 基底所得之結果。zh_TW
dc.description.abstractThis thesis proposed a new text-independent speaker identification technique. A popular decomposition called principal component analysis (PCA) is widely used for feature extraction. PCA has the ability to find out the principal components which are mutually orthogonal. We may also reduce the dimension of feature through these principal components. In the beginning, we construct a time-frequency covariance matrix using the original feature extracted from each frame. Then use PCA to obtain a transformation matrix to get better feature. However, the identification rate is not very good. So we propose some approaches to improve the performance. At first, we propose another decomposition called independent component analysis (ICA). ICA is more and more popular in recent year because it ability to find out the independent components which are mutually independent. Using ICA, we get an improvement at most 3.61% than using PCA. Besides, we introduce an optimizer called genetic algorithm (GA). It can provide an optimal solution from all. We want apply GA to reduce the dimension while still maintaining good identification rate. GA optimizer can choose the “best” set of the ICA basis. Using GA optimizer, we get an improvement at most 4.17% than using randomly chosen set of ICA basis; the result is even better than using all PCA basis.en_US
dc.language.isozh_TWen_US
dc.subject語者辨認zh_TW
dc.subject時域-頻域zh_TW
dc.subject獨立成分分析zh_TW
dc.subject基因演算法zh_TW
dc.subjectspeaker identificationen_US
dc.subjecttime-frequencyen_US
dc.subjectindependent component analysisen_US
dc.subjectgenetic algorithmen_US
dc.title基於獨立成分分析與基因演算法zh_TW
dc.titleA Text-Independent Speaker Identification Technique Based on ICA and GA Approachen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
顯示於類別:畢業論文