Full metadata record
DC FieldValueLanguage
dc.contributor.author陳博偉en_US
dc.contributor.authorBo-Wei Chenen_US
dc.contributor.author李福進en_US
dc.contributor.authorFu-Ching Leeen_US
dc.date.accessioned2014-12-12T02:31:36Z-
dc.date.available2014-12-12T02:31:36Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910591025en_US
dc.identifier.urihttp://hdl.handle.net/11536/71010-
dc.description.abstract本研究的主題在找出一串有限長度的正數列,使其頻譜在最小平方差的指標下,能夠最佳近似一個已給定的正或非正的頻譜。此有限長度正數列所產生的頻譜便可利用頻譜分解理論做分解,並用FIR系統做實現。將頻譜分解理論應用於求得的有限長度正數列之頻譜的結果,確實可找出一具有最小相位特性的FIR系統來做頻譜近似。文中將會用三個演算法來做比較,並以幾個不同階數的例子來探討此三個演算法的優缺點。zh_TW
dc.description.abstractThe purpose of this research is searching for a finite-length positive sequence so that its spectrum can optimally approximate to a given spectrum in the least-mean-square. This spectrum which is generated by this finite-length positive sequence can be factored by Spectrum Factorization Theorem and be realized by FIR systems. The result that apply Spectrum Factorization Theorem to spectrum of the new finite-length positive sequence can show that this theorem certainly find a minimum-phase FIR system for approximating the spectrum. In this report we will use three algorithms and discuss their advantages and disadvantages by using some numerical examples.en_US
dc.language.isozh_TWen_US
dc.subject正數列zh_TW
dc.subject頻譜zh_TW
dc.subject最小平方差zh_TW
dc.subject頻譜分解zh_TW
dc.subjectpositive sequenceen_US
dc.subjectspectrumen_US
dc.subjectleast-mean-squareen_US
dc.subjectspectrum factorizationen_US
dc.title近似最佳化正數列頻譜FIR濾波器設計zh_TW
dc.titleDesign of FIR Filter for Optimally Approximate to Spectrum of Positive Sequenceen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
Appears in Collections:Thesis