Title: | A Fuzzy Ontological Knowledge Document Clustering Methodology |
Authors: | Trappey, Amy J. C. Trappey, Charles V. Hsu, Fu-Chiang Hsiao, David W. 管理科學系 Department of Management Science |
Keywords: | Fuzzy inference control;hierarchical clustering;ontology schema;patent analysis;text mining |
Issue Date: | 1-Jun-2009 |
Abstract: | This correspondence presents a novel hierarchical clustering approach for knowledge document self-organization, particularly for patent analysis. Current keyword-based methodologies for document content management tend to be inconsistent and ineffective when partial meanings of the technical content are used for cluster analysis. Thus, a new methodology to automatically interpret and cluster knowledge documents using an ontology schema is presented. Moreover, a fuzzy logic control approach is used to match suitable document cluster(s) for given patents based on their derived ontological semantic webs. Finally, three case studies are used to test the approach. The first test case analyzed and clustered 100 patents for chemical and mechanical polishing retrieved from the World Intellectual Property Organization (WIPO). The second test case analyzed. and clustered 100 patent news articles retrieved from online Web sites. The third case analyzed and clustered 100 patents for radio-frequency identification retrieved from WIPO. The results show that the fuzzy ontology-based document clustering approach outperforms the K-means approach in precision, recall, F-measure, and Shannon's entropy. |
URI: | http://dx.doi.org/10.1109/TSMCB.2008.2009463 http://hdl.handle.net/11536/7158 |
ISSN: | 1083-4419 |
DOI: | 10.1109/TSMCB.2008.2009463 |
Journal: | IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS |
Volume: | 39 |
Issue: | 3 |
Begin Page: | 806 |
End Page: | 814 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.