標題: A Fuzzy Ontological Knowledge Document Clustering Methodology
作者: Trappey, Amy J. C.
Trappey, Charles V.
Hsu, Fu-Chiang
Hsiao, David W.
管理科學系
Department of Management Science
關鍵字: Fuzzy inference control;hierarchical clustering;ontology schema;patent analysis;text mining
公開日期: 1-六月-2009
摘要: This correspondence presents a novel hierarchical clustering approach for knowledge document self-organization, particularly for patent analysis. Current keyword-based methodologies for document content management tend to be inconsistent and ineffective when partial meanings of the technical content are used for cluster analysis. Thus, a new methodology to automatically interpret and cluster knowledge documents using an ontology schema is presented. Moreover, a fuzzy logic control approach is used to match suitable document cluster(s) for given patents based on their derived ontological semantic webs. Finally, three case studies are used to test the approach. The first test case analyzed and clustered 100 patents for chemical and mechanical polishing retrieved from the World Intellectual Property Organization (WIPO). The second test case analyzed. and clustered 100 patent news articles retrieved from online Web sites. The third case analyzed and clustered 100 patents for radio-frequency identification retrieved from WIPO. The results show that the fuzzy ontology-based document clustering approach outperforms the K-means approach in precision, recall, F-measure, and Shannon's entropy.
URI: http://dx.doi.org/10.1109/TSMCB.2008.2009463
http://hdl.handle.net/11536/7158
ISSN: 1083-4419
DOI: 10.1109/TSMCB.2008.2009463
期刊: IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS
Volume: 39
Issue: 3
起始頁: 806
結束頁: 814
顯示於類別:期刊論文


文件中的檔案:

  1. 000266069600018.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。