完整後設資料紀錄
DC 欄位語言
dc.contributor.author郭哲呈en_US
dc.contributor.authorKuo, Che-Chengen_US
dc.contributor.author李榮耀en_US
dc.contributor.authorLee, Jong-Eaoen_US
dc.date.accessioned2014-12-12T02:32:59Z-
dc.date.available2014-12-12T02:32:59Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070052201en_US
dc.identifier.urihttp://hdl.handle.net/11536/71637-
dc.description.abstractKorteweg-deVries方程是個非線性微分方程[參考文獻 [5][6][7]],我們研究這方程有兩個方面。首先,我們研究了黎曼空間的函數空間的解和非線性逼近。 再者,我們研究古典橢圓函數並利用Weierstrassian橢圓函數來分析KdV方程來尋找特殊解和相關性質。zh_TW
dc.description.abstractThe Korteweg-deVries equation is a nonlinear equation[Reference [5][6][7]], we study it in two aspects. First, we study the function spaces of its solutions and nonlinear approximations, which are Riemann surfaces. Secondly, we study theory of the classical elliptic function and use Weierstrassian function to analyze KdV equation to find some special solution and related properties.en_US
dc.language.isoen_USen_US
dc.subject黎曼空間zh_TW
dc.subjectRiemann Surfaceen_US
dc.title黎曼空間與橢圓函數的理論與Korteweg-deVries方程的應用zh_TW
dc.titleThe Theory of Riemann Surface and Elliptic Function with Application to the Korteweg-deVries equationen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文