完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Hsiuyingen_US
dc.date.accessioned2014-12-08T15:09:24Z-
dc.date.available2014-12-08T15:09:24Z-
dc.date.issued2009-06-01en_US
dc.identifier.issn0960-3174en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11222-008-9077-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/7173-
dc.description.abstractFor a confidence interval (L(X),U(X)) of a parameter theta in one-parameter discrete distributions, the coverage probability is a variable function of theta. The confidence coefficient is the infimum of the coverage probabilities, inf (theta) P (theta) (theta a(L(X),U(X))). Since we do not know which point in the parameter space the infimum coverage probability occurs at, the exact confidence coefficients are unknown. Beside confidence coefficients, evaluation of a confidence intervals can be based on the average coverage probability. Usually, the exact average probability is also unknown and it was approximated by taking the mean of the coverage probabilities at some randomly chosen points in the parameter space. In this article, methodologies for computing the exact average coverage probabilities as well as the exact confidence coefficients of confidence intervals for one-parameter discrete distributions are proposed. With these methodologies, both exact values can be derived.en_US
dc.language.isoen_USen_US
dc.subjectConfidence coefficienten_US
dc.subjectConfidence intervalen_US
dc.subjectCoverage probabilityen_US
dc.subjectDiscrete distributionen_US
dc.titleExact average coverage probabilities and confidence coefficients of confidence intervals for discrete distributionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11222-008-9077-8en_US
dc.identifier.journalSTATISTICS AND COMPUTINGen_US
dc.citation.volume19en_US
dc.citation.issue2en_US
dc.citation.spage139en_US
dc.citation.epage148en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000263181200003-
dc.citation.woscount7-
顯示於類別:期刊論文


文件中的檔案:

  1. 000263181200003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。