完整後設資料紀錄
DC 欄位語言
dc.contributor.author陳囿丞en_US
dc.contributor.authorChen, You-Chengen_US
dc.contributor.author莊重en_US
dc.contributor.authorJuang, Jonqen_US
dc.date.accessioned2014-12-12T02:33:18Z-
dc.date.available2014-12-12T02:33:18Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079922506en_US
dc.identifier.urihttp://hdl.handle.net/11536/71745-
dc.description.abstract在這篇論文中,考慮一些碎形不變集的盒子和豪斯多夫維度之間的關係。首先,我們將回顧一個著名的定理,此定理給出了充分的條件讓集合F的盒子和豪斯多夫維度是相等的,並提供一些這樣的例子當作一個例證。其次,我們考慮在整數乘法半群的作用下,符號序列空間的不變子集,此由[1]提出。這樣例子的盒子和豪斯多夫維度由不同做法說明它們是不同的。zh_TW
dc.description.abstractIn this thesis, the relationship between box and Hausdorff dimensions for a certain class of fractal invariant sets is considered. First, we shall review one well-known theorem that gives the sufficient conditions on a set F for which their box and Hausdorff dimensions are equal. Some examples are provided as an illustration. Second, we consider subsets of the symbolic sequence space that are invariant under the action of the semigroup of multiplicative integers, which are proposed in [1]. Box and Hausdorff dimensions of these examples are shown by different following their approach.en_US
dc.language.isoen_USen_US
dc.subject盒子維度zh_TW
dc.subject豪斯多夫維度zh_TW
dc.subject碎形zh_TW
dc.subjectBox dimensionen_US
dc.subjectHausdorff dimensionen_US
dc.subjectFractalen_US
dc.title一些不變碎形的盒子和豪斯多夫維度zh_TW
dc.titleBox and Hausdorff Dimensions for Certain Classes of Invariant Fractalsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文