Full metadata record
DC FieldValueLanguage
dc.contributor.author楊家瓏en_US
dc.contributor.authorYang, Chia-Lungen_US
dc.contributor.author盧鴻興en_US
dc.contributor.authorLu, Horng-Shingen_US
dc.date.accessioned2014-12-12T02:33:27Z-
dc.date.available2014-12-12T02:33:27Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070052613en_US
dc.identifier.urihttp://hdl.handle.net/11536/71796-
dc.description.abstract波動風險溢酬在近些年是一個很重要的變量,因為它可以表達經濟市場狀態的變化,然而在不同文獻中對於波動風險溢酬的定義非常多樣。而今天我們要討論的是在隨機波動模型下,如何不需要引進損失函數或一些替代品計算出波動風險溢酬,在我們的方法中我們將利用Heston (1993)提出的模型和Niu(2013)提出隨機波動模型的概似函數的近似進行統計推論,我們可以找到波動風險溢酬和選擇權價錢之間的一對一關係,在此篇論文的最後介紹了波動風險溢酬在S&P 500下的曲線變化以及市場不同狀態如合影響波動風險溢酬的曲線。zh_TW
dc.description.abstractThe volatility risk premium is an important factor for recent study and in mathematical finance since it represents the variability of economic state. However, there are many literatures that define the risk premium with different methods. In this paper, we discussed how to compute the volatility risk premium without introducing any extra loss function and proxy. We used the Heston (1993) model and simulated likelihood method proposed by Niu (2013) to do statistic inference. We can find a one-to-one relation between option price and volatility risk premium. At last, we use S&P 500 to show the volatility risk premium curve and assess market risk for different curve.en_US
dc.language.isoen_USen_US
dc.subject風險溢酬zh_TW
dc.subject微笑曲線zh_TW
dc.subjectvolatility risk premiumen_US
dc.subjectsmileen_US
dc.title在隨機波動模型下風險溢酬的曲線zh_TW
dc.titleDoes volatility risk premium smile? A stochastic volatility model approachen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis