完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 李道一 | en_US |
dc.contributor.author | Lee, Tao-Yi | en_US |
dc.contributor.author | 王毓駒 | en_US |
dc.contributor.author | Wang, Yu-Jiu | en_US |
dc.date.accessioned | 2014-12-12T02:34:41Z | - |
dc.date.available | 2014-12-12T02:34:41Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT070050184 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/72355 | - |
dc.description.abstract | 射頻積體電路設計已邁入系統整合時代,在單石(Monolithic)低成本CMOS製程中完成射頻、類比與數位訊號處理電路的整合是超大型積體電路系統(System-on-a-Chip, SoC)的必然趨勢。射頻端亦屏棄以往單一頻率轉而朝向超寬頻,多模運作等。近年可程式化射頻前端(Software Defined Radio, SDR)亦開始嶄露頭角。 本論文提出並於TSMC 65nm CMOS製程中實做一個新型的5.8/10.5GHz; 5.8/24GHz雙頻、雙模無線收發機,該架構可同時傳送或接收兩個雙頻率;並能確保雙頻率功率比值不會因為瞬間壓降、製程飄移、溫度變異或本地震盪訊號不穩定,而造成改變。故能在一個恆定基準上比較通訊路徑於雙頻的損耗差,進而估計造成路徑損耗的變因(如降雨或大氣背景衰減量)。以數個收發機架構分散式網路,搭配分散式電腦斷層掃描演算法重建網格資訊,以分析此大空間尺度的路徑損耗變因。設計完成之收發機以量測降雨為目標,解決山區無法使用降雨雷達之難題。為了克服射頻超大型系統過程中所遇到的難題,如元件模型不準和過度費時的全系統模擬等,設計流程的改善和元件建模於本論文中亦有探討。單石CMOS射頻收發機中最具挑戰性的關鍵功能區塊---功率放大器(Power Amplifier, PA)有獨立章節探討特別是高階被動輸出網路的設計 | zh_TW |
dc.description.abstract | Radio frequency integrated circuits design is entering a mixed signal, holistic system integration era. It is an assured trend that RF front-ends are integrated in low-cost CMOS process with low frequency high throughput analog-to-digital interfaces as well as mighty digital signal processing blocks in state-of-the-art SoC chips. For RF front-ends, narrow-band systems are being replaced by ultra wide-band or multi-band systems. In addition, multi-mode, programmable RF circuits are gaining its ground in the promising ``SDR" (software defined radio) systems. In this thesis, a new 5.8/10.5GHz; 5.8/24GHz dual-band, dual-mode radio frequency transceiver architecture is proposed, analyzed and implemented in TSMC 65 nm CMOS process under 1mmx1mm die area. The system is capable of monitoring dual-band path loss ratio when two or more transceivers are operating. Its self-calibrating feature immunizes the system from process, voltage, and temperature variation. Thus the path loss can be monitored under a constant and reliable reference. This specific feature enables distributed computerized tomography, which assists meteorologists to reconstruct grids of real-time rain fall strengths in mountain areas and resolves the weakness of meteorological radars. To overcome the obstacles in radio-frequency VLSI implementation, design methodologies, such as custom RF passive device modeling, EM co-simulation, and behavioral modeling are refined to suit the latest trend of highly integrated mixed signal integrated circuits. The most challenging functional block in monolithic CMOS transceiver -- Power Amplifiers, are discussed in its own chapter with emphasis on a newly proposed passive network synthesis technique. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 超寬頻射頻收發機 | zh_TW |
dc.subject | 無線感測網路 | zh_TW |
dc.subject | 分散式電腦斷層掃描 | zh_TW |
dc.subject | 可程式化射頻前端 | zh_TW |
dc.subject | Radio Frequency Transceiver | en_US |
dc.subject | Wireless Sensory Network | en_US |
dc.subject | Distributed Computerized Tomography | en_US |
dc.subject | Software Defined Radio | en_US |
dc.title | 應用於降雨強度無線感測網路之同運行雙頻雙模射頻收發器 | zh_TW |
dc.title | A Concurrent Dual-Band Dual-Mode Transceiver IC for Wireless Precipitation Sensory Network | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電子工程學系 電子研究所 | zh_TW |
顯示於類別: | 畢業論文 |