完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorLin, Ken-Lien_US
dc.contributor.authorKuo, Bor-Chenen_US
dc.contributor.authorLiang, Sheng-Fuen_US
dc.contributor.authorChung, I-Fangen_US
dc.contributor.authorVan, Lan-Daen_US
dc.date.accessioned2014-12-08T15:09:30Z-
dc.date.available2014-12-08T15:09:30Z-
dc.date.issued2007en_US
dc.identifier.isbn978-1-4244-0920-4en_US
dc.identifier.issn0271-4302en_US
dc.identifier.urihttp://hdl.handle.net/11536/7257-
dc.identifier.urihttp://dx.doi.org/10.1109/ISCAS.2007.378434en_US
dc.description.abstractAccidents caused by errors and failures in human performance among traffic fatalities have a high rate causing death and become an important issue in public security. The key problem causing these car accidents is mainly because that the drivers failed to perceive the changes of the traffic lights or the unexpected conditions happening accidentally on the roads. In this paper, we devised a quantitative analysis for ongoing assessment of driver's cognitive responses by investigating the neurobiological information underlying electroencephalographic (EEG) brain dynamics in traffic-fight experiments in a virtual-reality (VR) dynamic driving environment. Three different feature extraction methods including Nonparametric Weighted Feature Extraction (NWFE), Principlal Component Analysis (PCA), Discriminant Analysis Feature Extraction (DAFE) are applied to reduce the feature dimension and project the measured EEG signals to a feature space spanned by their eigenvectors. After that, the mapped data can be classified with fewer features and their classification results are compared by utilizing three different classifiers including Gaussian classifier (GC), k Nearest neighbor classification (KNNC), and Naive Bayes Classifier (NBC). Experimental results show that the successful rate of Nonparametric Weighted Feature Extraction combined with Gaussian classifier is higher more than 10% compared with other combinations. It also demonstrates the feasibility of detecting and analyzing single-trail ERP signals that represent operators' cognitive states and responses to task events.en_US
dc.language.isoen_USen_US
dc.subjectelectroencephalographicen_US
dc.subjectNonparametric Weighted Feature Extractionen_US
dc.subjectPrinciplal Component Analysisen_US
dc.subjectDiscriminant Analysis Feature Extractionen_US
dc.subjectGaussian classifieren_US
dc.subjectk Nearest neighbor classificationen_US
dc.subjectNaive Bayes Classifieren_US
dc.titleClassification of driver's cognitive responses using nonparametric single-trial EEG analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ISCAS.2007.378434en_US
dc.identifier.journal2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11en_US
dc.citation.spage2019en_US
dc.citation.epage2023en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000251608402139-
顯示於類別:會議論文


文件中的檔案:

  1. 000251608402139.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。