完整後設資料紀錄
DC 欄位語言
dc.contributor.author楊秉恩en_US
dc.contributor.authorYang, Ping-Enen_US
dc.contributor.author吳毅成en_US
dc.contributor.authorWu, I-Chenen_US
dc.date.accessioned2014-12-12T02:35:59Z-
dc.date.available2014-12-12T02:35:59Z-
dc.date.issued2013en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070056102en_US
dc.identifier.urihttp://hdl.handle.net/11536/72774-
dc.description.abstract近來蒙地卡羅樹狀搜尋(Monte Carlo Tree Search;簡稱MCTS)方法,已相當成功地應用於電腦圍棋程式;工作層級搜尋(Job-level Search)方法,最近也成功地應用於解六子棋開局問題。本論文的研究方向是將此兩項技術結合,成為工作層級MCTS(Job-level MCTS;簡稱JL-MCTS),並將其應用於解7x7 Killall圍棋問題。 對於JL-MCTS,我們設計一些預先更新策略(Pre-update Policy),分析對平行化的效率。而為了解7x7 Killall 圍棋,由於搜尋樹太龐大,我們利用資料庫解決記憶體使用問題,並改善資料庫存取效率與解決同步問題。另外,為了不浪費運算資源,我們使用Transposition Table,但因此產生了GHI問題(Graph History Interaction),為了解決GHI問題,我們提出一新的GHI問題解決方法,來解出7x7 Killall圍棋的盤面。 最後我們解出一個僅有四子的7x7 Killall圍棋開局盤面,總共算了37,792,301個節點,若使用288核心,將耗時89天,這是目前可能解出之圍棋開局中,有最多空點的盤面。zh_TW
dc.description.abstractMonte Carlo tree search has been successfully applied to the improvement of Go program strengths, and Job-level Search has been successfully applied to solving Connect6 openings. We combine the two techniques into Job-level Monte Carlo Tree Search(JL-MCTS) and use it to solve the game of 7x7 Killall-Go. Several pre-update policies were designed for our JL-MCTS. Experiments were performed to compare the parallelized efficiency of each policy. In order to solve 7x7 Killall-Go , for which the search tree memory requirements are huge, we provided a solution to store the search tree into a database, which solved the problem of access efficiency and synchronization. The GHI (Graph History Interaction) problem for Go was also an issue since transposition tables were used. For solving 7x7 Killall-Go correctly, we designed a new approach to solve the GHI problem. We have solved a 7x7 Killall-Go position with only four stones on the board, which is computed in parallel with 288 cores by 37,792,301 nodes and 89 days. This is one of the most difficult Killall-Go openings that have been solved to date because of its larger board size and the large amount of playable space involved.en_US
dc.language.isozh_TWen_US
dc.subject蒙地卡羅zh_TW
dc.subject蒙地卡羅樹狀搜尋zh_TW
dc.subject工作層級搜尋zh_TW
dc.subject圍棋zh_TW
dc.subject殺光圍棋zh_TW
dc.subjectGHI問題zh_TW
dc.subject資料庫zh_TW
dc.subjectMonte Carloen_US
dc.subjectMonte Carlo Tree Searchen_US
dc.subjectJob-level Searchen_US
dc.subjectGoen_US
dc.subjectKillall-Goen_US
dc.subjectGHI Problemen_US
dc.subjectDatabaseen_US
dc.title工作層級蒙地卡羅樹狀搜尋之研究zh_TW
dc.titleA Study of Job-level Monte Carlo Tree Searchen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文