标题: | 平行蒙地卡罗树状搜寻之软体框架 Software Framework for Parallel Monte Carlo Tree Search |
作者: | 廖挺富 Liao, Ting-Fu 吴毅成 Wu, I-Chen 资讯科学与工程研究所 |
关键字: | 蒙地卡罗树状搜寻;软体框架;平行化;电脑对局;Monte Carlo Tree Search;Software Framework;Parallelization;Computer Game |
公开日期: | 2013 |
摘要: | 在本篇论文中,我们设计出了一个软体框架,能协助游戏人工智慧的开发者,快速开发基于平行化蒙地卡罗树状搜寻的人工智慧。这个框架实作了与系统相关的细节,能够使开发者能够快速地建立起人工智慧,并专注在游戏相关的专家知识强化上。 这个框架支援在共享记忆体架构以及分散式系统的平行,经测试可在Windows系统以及Linux系统执行,并且已套用至双人完整资讯(perfect information)游戏、双人不完整资讯(imperfect information)游戏以及单人游戏上。我们的实验使用围棋版本的实作;在共享记忆体平行化中,使用48核心可以达到36.08倍的模拟次数,与单核心版本对战,使用12核心可以达到90%以上胜率。在分散式平行化下,我们比较单一台机器与8台机器各使用36核心,分别与Fuego对战,胜率从23%提升至68%。除围棋外,亦套用至禁围棋、暗棋等游戏上;其中围棋利用此平行框架,同时使用576核心进行运算,在十七届电脑奥林匹亚电脑对局竞赛中,获得第四名。 In this thesis, we design a software framework for developing computer games based on parallel Monte-Carlo tree search. This framework hides the game-independent details from developers, so that developers can concentrate on improving heuristics related to game-specific knowledge. This framework supports parallelization in both shared-memory and distributed systems, and cross-platform in both Windows and Linux operating systems. In our experiments, we use the implementation of Go. In shared-memory parallelization, the speedup is 36.08 for 48 cores, and the winning rate against the single core version is more than 90% for 12 cores. In distributed-memory system, the winning rate for one machine with 36 cores against Fuego is 23%, while that for 8 machines each with 36 cores is 68%, about 45% higher. In addition to Go, we also applied this framework to another two-player perfect-information games, NoGo, a two-player imperfect-information game, Dark chess, and a single player game, 8 puzzle. The one for Go using a total of 576 cores won the 4th place in the 17th Computer Olympiad, held in Yokohama, Japan, 2013. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070056001 http://hdl.handle.net/11536/73308 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.