完整後設資料紀錄
DC 欄位語言
dc.contributor.author張勝雄en_US
dc.contributor.author劉敦仁en_US
dc.date.accessioned2014-12-12T02:40:39Z-
dc.date.available2014-12-12T02:40:39Z-
dc.date.issued2013en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070163426en_US
dc.identifier.urihttp://hdl.handle.net/11536/74467-
dc.description.abstract在網路資訊快速成長的時代,隨著使用的載具多元化,消費者在網路留下的瀏覽記錄數量也是呈現大幅度的成長,在大量的資料記錄累積下,尋找執行效能比較合適的解決方案,分析工具的選擇也成為一個重要的議題。 目前市面上知名的開放原始碼分析工具有R與Mahout,它們皆能搭配Hadoop平台進行運作。本研究主要是透過實驗的方式來了解,兩工具在推薦演算法執行效能上的差異。研究結果發現,以wordcount之實驗,使用Hadoop-streaming搭配R編寫之程式進行測試所得到的執行效能與使用Hadoop native程式的執行效能差不多;但在有矩陣運算時,Mahout與R兩者在記憶體的支配上就出現明顯差異。本研究對於Mahout及R兩者的執行效能測試結果分析,可提供欲使用Hadoop搭配Mahout及R進行運算之使用者參考。zh_TW
dc.description.abstractIn recent years, the number of browsing tools, customers, and the amount of data have grown exponentially. How to select data analysis tool is an important issue for decision-maker. The two popular open sources of analysis tool are R and Mahout. Both of them can operate on Hadoop platform. The purpose of this research is to understand the recommendation algorithm operation performance with R and Mahout. By conducting several experiments. The experiment results of wordcount data analysis show that Hadoop-streaming with R can get the same performance with Hadoop native. For the experiments involving matrix calculations, R requires larger memory capacity than Mahout.en_US
dc.language.isozh_TWen_US
dc.subject分散式zh_TW
dc.subject效能比較zh_TW
dc.subjectDistributionen_US
dc.subjectPerformanceen_US
dc.title基於Hadoop平台之物品推薦效能比較分析zh_TW
dc.titleComparative Analysis of the Performance of Item Recommendations based on Hadoop Platformsen_US
dc.typeThesisen_US
dc.contributor.department管理學院資訊管理學程zh_TW
顯示於類別:畢業論文