Full metadata record
DC FieldValueLanguage
dc.contributor.author管俊奎en_US
dc.contributor.authorGuan, Jiun-Kueien_US
dc.contributor.author李榮耀en_US
dc.contributor.authorLee, Jong-Eaoen_US
dc.date.accessioned2014-12-12T02:41:10Z-
dc.date.available2014-12-12T02:41:10Z-
dc.date.issued2013en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070152302en_US
dc.identifier.urihttp://hdl.handle.net/11536/74688-
dc.description.abstract在此篇論文中, 我們研習用橢圓函數 dn(u; k)去表述Nonlinear Schrὂdinger equation (NLS)的某些特殊週期解 q iq_t+q_xx+2〖|q|〗^2 q = 0, 此 dn 函數是定義在某個黎曼空間上的, 所以首先我們介紹黎曼空間的理論, 其次再介紹橢圓函數, 最後再利用黎曼空間和橢圓函數的理論去分析及解NLS的特殊解及其退化解。 zh_TW
dc.description.abstractIn this paper, we want to use the elliptic function dn(u; k) to express analytically some special solutions of the Nonlinear Schrὂdinger equation (NLS), iq_t+q_xx+2〖|q|〗^2 q=0 The function dn(u; k) is defined on some Riemann surface, so we first introduce the theory of Riemann surfaces, and then we introduce elliptic functions. Finally, we use theory of Riemann surfaces and elliptic functions to analyze and solve some special solutions of the NLS and discuss the degenerates of those solutions. en_US
dc.language.isoen_USen_US
dc.subject黎曼空間zh_TW
dc.subject橢圓函數zh_TW
dc.subject非線性薛丁格方程zh_TW
dc.subjectRiemann surfaceen_US
dc.subjectelliptic functionen_US
dc.subjectnonlinear Schrodinger equationen_US
dc.title非線性薛丁格方程基本理論的探討zh_TW
dc.titleStudy of the Underlying Theory of the Nonlinear Schrodinger Equationsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系數學建模與科學計算碩士班zh_TW
Appears in Collections:Thesis