標題: 利用氫化物氣相磊晶法成長氮化鎵厚膜於濺鍍氮化鋁緩衝層之圖案化藍寶石基板
Thick GaN layers prepared on AlN/Patterned Sapphire Substrate by Hydride Vapor Phase epitaxy
作者: 吳霽圃
Wu, Ji-Pu
郭政煌
Kuo, Cheng-Huang
照明與能源光電研究所
關鍵字: 氮化鎵;氫化物氣相磊晶法;濺鍍氮化鋁;圖案化藍寶石基板;GaN;Hydride Vapor Phase Epitaxy;Sputtered AlN;Patterned Sapphire Substrate
公開日期: 2013
摘要: 在本論文中主要利用實驗室自組水平式氫化物氣相磊晶系統 (Hydride Vapor Phase Epitaxy, HVPE) 成長氮化鎵厚膜,首先透過調整三五族氣體比例,有效改善因HVPE系統長速過快的特性所導致不平整的氮化鎵表面,並成功將此成長參數應用在具有濺鍍氮化鋁緩衝層的藍寶石基板之上,然而許多國內外的文獻中,明確指出發光二極體結構應用在圖案化藍寶石基板之上時,能夠大幅增加光萃取效率,並且有效降低缺陷密度,但尚未有人將此基板導入HVPE成長系統,因此我們再將此參數導入濺鍍氮化鋁/圖案化藍寶石基板上時,我們可以從光學顯微鏡下得知其表面有許多島狀氮化鎵(grain)分布,遂推測其成因在尚未將錐體圖案蓋過之前的長速過快,而讓氮化鎵在包覆圖案化錐體時,包覆地不均勻,進而在錐體圖案側邊出現諸多縫隙影響後續磊晶層的堆疊,而此問題透過MOCVD成長圖案化基板的經驗,成功利用兩段式成長法解決表面不平整問題,直至現在本實驗室已具有能力成長出表面平整的氮化鎵厚膜於濺鍍氮化鋁之圖案化藍寶石基板之上。因此利用HVPE成長氮化鎵厚膜除了能夠有效降低時間成本、加快氮化鎵厚膜基板生產外,還能在光電特性及熱特性上有明顯的提升。將上述樣品透過光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)、X-ray繞射儀(XRD)、原子力顯微鏡(AFM)、以及量測單位面積缺陷密度(EPD)等方式,對材料的表面以及材料品質做進一步分析。 分析結果顯示利用HVPE成長厚膜氮化鎵的樣品在XRD量測氮化鎵(002)面或(102)面的半高寬皆比MOCVD成長氮化鎵薄膜在相同基板上來的窄,可由726 arcsecs降至325 arcsecs,而氮化鎵(102)面的半高寬則由574 arcsecs降至344 arcsecs。單位面積缺陷數亦可由1.7 x 108/cm2降至8.8 x 107/cm2,由此證明了氮化鎵膜厚越厚,其材料品質越佳。 接著將樣品應用於氮化鎵發光二極體元件,首先利用MOCVD成長氮化鎵發光二極體結構,再利用黃光微影製程技術製作成發光二極體元件後,並量測其光電特性和熱特性。可由前期研究得知利用HVPE成長之氮化鎵厚膜提升了氮化鎵材料的品質,接著利用MOCVD成長為發光二極體結構後,其內部量子效率提升了94%;且在LED元件之光輸出功率下增加了88.8%,另外也利用熱影像量測不同電流驅動下之發光二極體的熱分布,由於氮化鎵材料之導熱特性佳,故當氮化鎵磊晶層越厚時,發光元件的散熱效率比厚度薄之樣品更容易將熱導出,大幅降低了熱效應,因此提升了飽和電流值,可由300mA提升至最高為405mA。由此知道以HVPE成長的氮化鎵厚膜於濺鍍氮化鋁之圖案化藍寶石基板所製作的發光二極體元件,可有效提升光輸出功率以及改善元件散熱能力。
In this thesis, we used a horizontal home-made hydride vapor phase epitaxy (HVPE) to grow thick GaN layers on a sputtered AlN/patterned sapphire substrate. We initially optimized surface morphology and crystal quality by changing the V-III ratio to acquire a smooth surface. Next, we attempted to induce the sputtered AlN into becoming a buffer layer to realize one-step growth in HVPE and then applied this technique to the patterned sapphire substrate. Results showed that the GaN films grown on the patterned sapphire substrate had a rough surface. Thus, we induced a two-step growth epitaxy technology and successfully improved the morphology and quality of the GaN film. We then used optical microscopy, scanning electron microscopy, X-ray diffraction, atomic force microscopy, and transmission electron microscopy to measure surface morphology, epitaxial layer thickness, and crystal quality. The 10 μm-thick GaN template had lower etching pit density (from 1.7108 cm−1 to 8.8107 cm−1) and smaller FWHM (from 726 arcsecs to 325 arcsecs) than the 2 μm-thick GaN template from MOCVD. We also applied a thick GaN template to GaN-based light-emitting diodes (LEDs). Compared with the light output power of the LED device grown on the 2 μm-thick GaN template, that of the LED device grown on the 10 μm-thick GaN template was enhanced by 89% at an injection current of 20 mA. The saturation current of the LED device grown on the 10 μm-thick template also improved from 300 mA to 405 mA when compared with that of the LED device grown on the 2 μm-thick GaN template. These results can be explained through thermal imaging. This thesis provides a suitable GaN template for LED devices.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT070158124
http://hdl.handle.net/11536/74853
顯示於類別:畢業論文